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Abstract
In this paper we provide a new interpretation of the Willmore energy as the curvature
of a quaternionic connection that has a clear geometric interpretation in terms of mean
curvature spheres rolling over the surface. Building on this interpretation, we show that
the Möbius invariant discretization of the Willmore energy introduced by Bobenko can
be interpreted as the curvature of a discrete connection defined by rolling the edge cir-
cumspheres. We describe how a choice of discrete mean curvature spheres produces a
Möbius invariant discrete Willmore energy. In this way, we define a new discrete Will-
more energy for surfaces built out of spherical pieces. To facilitate the computations we
describe a new quaternionic description of the conformal three-sphere, along with realiza-
tions of the spaces of circles, spheres, and point pairs in R3. It is obtained by specializing
the quaternionic projective model of the conformal four-sphere.
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1 Introduction
The Willmore energy is the most well-studied example of a surface functional that is invariant
under Möbius transformations. For an immersion f WM ! R3 of a smooth two-dimensional
manifold, the Willmore energy is defined as
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Here H D 1
2
.�1 C �2/ is the mean curvature, K D �1�2 the Gaussian curvature, �f the

induced volume form, and �1 and �2 are the principal curvatures of the immersion, resulting
in a Möbius invariant integrand which measures the squared deviation of the surface from
being pointwise spherical. Recall that the group of Möbius transformations of S3 consists
of the diffeomorphisms of S3 carrying round 2-spheres into round 2-spheres. By adding a
point at1 we can consider R3 as a conformal submanifold of the one-point compactification
S3 D R3 [ f1g and treat Möbius transformations as conformal diffeomorphisms of R3 [
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Fig. 1 The discrete formulation of the Willmore energy enables the computation of (constrained) critical points
via numerical minimization. The discrete constrained Willmore tori visualized here provide realizations of points in
Teichmüller space as triangulated surfaces in S3.

f1g. The group of Möbius transformations of R3 fixing 1 is generated by the orthogonal
transformations (isometries fixing the origin), homeotheties (p 2 R3 7! �p, � > 0), and
translations. Also appending inversion in the unit sphere to this list, the set of transformations
generates the full group of Möbius transformations of S3.

In the smooth setting the Willmore energy, due to its invariance under Möbius transfor-
mation of S3, plays a central role in conformal geometry and has stimulated many interesting
research directions [1–3]. Arguably, the most famous mathematical result about the Willmore
energy was obtained in 2012 when Marques and Neves used the Almgren-Pitts min-max the-
ory to resolve the Willmore conjecture stating that, up to Möbius transformation, the Clifford
torus minimizes the Willmore energy among immersed tori in R3 [4]. The Willmore energy
also arises naturally in the study of a variety of scientific domains. In cell biology, it models
the geometry and locomotion of lipid bilayers [5–9]. In general relativity, it appears as the
leading term of the Hawking mass [10, 11]. In nonlinear elasticity, it measures the bending
energy of thin plates [12]. The Willmore energy is also popular in computational geometry
and computer graphics due to the regularizing effects of its gradient flow [13–16]. Constrained
Willmore surfaces also appear in a theory that encapsulates minimal surfaces, CMC surfaces,
and Willmore surfaces [3]—see Figure 1 for numerical examples of constrained Willmore
tori computed following the approach in [14] 1 . As the importance of the Willmore energy
is evidenced in the context of differential geometry and physics, it is desirable to have a rich
theory of discrete Willmore surfaces suitable for computational purposes.

Discrete Setup
We study the discrete differential geometry of the Möbius invariant discretization of the Will-
more energy on a simplicial surface M D .V;E;F/ [13, 17], where V denotes the set of
vertices i , E the set of oriented edges ij , and F the set of oriented triangles ijk. An immer-
sion into S3 is given by vertex positions fi 2 S

3 for i 2 V. The discrete energy W then
is defined in terms of the intersection angles ˇij between the circumcircles Cijk and Cj il of
adjacent faces ijk and j il and using the negative angle defect to measure the planarity of

13D models of these surfaces are made available to download at https://www.yousufsoliman.com/surfaces.html
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each vertex star after sending fi to infinity with a Möbius transformation:

W WD 1
2

X
i2V

Wi ; Wi WD

X
ij

ˇij � 2�: (2)

fl fk

fi

fj

Since the discrete energy is defined using only the angles between circles it is Möbius
invariant. Furthermore, it is non-negative and Wi C Ki � 0 where Ki is the usual discrete
Gaussian curvature (angle defect). Finally it vanishes when the vertex star is convex and fi
and all its neighbors lie on a common sphere. These properties of Wi mirror the smooth
setting in that .H 2 � K/�f is non-negative, Möbius invariant, and measures infinitesimal
sphericality (�1 D �2). Together, these properties justify calling it the discrete Willmore
energy. Recently, �-convergence of the functional has been established with respect to weak-
� convergence in W 1;1 as graphs of the piecewise linear surface to the smooth surface [18].
Consistency of the local approximation of the energy is also known for triangulations aligned
to principal curvature directions [19].

Rolling Mean Curvature Spheres: Smooth and Discrete
To express the Willmore energy in a manifestly Möbius invariant way, one introduces the
conformal Gauss map, also known as the mean curvature sphere congruence:

S WM ! S � R4;1; satisfying Tf .p/Sp D df .TpM/ and HSp D Hp; (3)

where S is the Lorentzian space of 2-spheres in S3 (see Section 2.1), p 2M , HSp the mean
curvature of the sphere Sp , andHp the mean curvature of the immersion f at p [20–22]. The
conformal Gauss map is Möbius invariant, even though the mean curvature itself is not. A
classical result due to Blaschke is that the Willmore energy integrand is equal to the area form
of the conformal Gauss map [20]. A modern treatment of conformal submanifold geometry
using the machinery of Cartan geometries was given in [22, 23], and Sharpe showed that the
Willmore energy can be realized as the curvature of a Cartan geometry obtained by restricting
the flat Möbius structure of S3 to an immersed surface [23].

To elucidate the differential geometric interpretation of the discrete energy, we first
develop a related geometric interpretation of the Willmore energy in the smooth setting. The
main idea is that the Willmore integrand can be realized as the curvature of a rolling spheres
connection in the same way as the Gauss curvature form can be realized as the curvature
of the Levi-Civita connection—geometrically, the Levi-Civita connection describes how to
roll tangent planes over the surface without slipping or twisting. Extrinsically, the process
of rolling tangent planes is characterized by the trajectories of the induced parallel transport
being orthogonal to the tangent planes themselves. By following the parallel transport around
a closed loop one obtains an affine map of the tangent plane onto itself. The curvature of the
connection at a point p is the affine map of TpM onto itself obtained as the limit of follow-
ing the parallel transport around infinitesimal loops based at p. As the Levi-Civita connection
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is torsion free, the curvature fixes the point p and on the tangent space df .TpM/ acts by a
rotation around the normal with an angle given by the Gauss curvature of the surface.

To obtain a Möbius geometric generalization, we replace the tangent plane congruence
with an arbitrary tangent sphere congruence and replace the Levi-Civita connection with a
Möbius connection whose parallel transport trajectories are orthogonal to the sphere con-
gruence. This orthogonal trajectories property, visualized in Figure 2, justifies calling the
connection a rolling spheres connection since the trajectories follow the paths that one would
get by rolling a sphere over the surface in Möbius three-space. In the special case when the
sphere congruence is given by the Möbius invariant mean curvature sphere congruence, we
find that the Willmore energy arises as the rotational component of the curvature form of the
connection obtained by rolling the mean curvature spheres over the surface. Our main result
about the discrete energy provides an analogous geometric interpretation of it: we prove that
the discrete Willmore energy can be computed from the curvature of a Möbius connection
obtained by rolling the circumspheres from one edge to the next around a vertex.

Fig. 2 Möbius geometric rolling of a sphere congruence traces out trajectories that intersect the spheres orthogonally.
The tractrix curve visualized above is obtained by rolling a sphere of constant radius over a flat plane.

Quaternionic Projective Geometry and S3

In Section 2 we review the basics of the quaternionic projective (i.e., Möbius) geometry of
S4 as presented in [24] and specialize the situation to S3 by restricting the group of quater-
nionic projective transformations of S4 to those which preserve a fixed Möbius 3-sphere, S3,
in S4. We then realize spaces of geometric objects associated to this quaternionic projective
geometry (e.g., the spaces of oriented 2-spheres, circles, and point pairs in S3) as spaces of
quaternionic matrices. We define an algebraic structure, resembling vector calculus in R3, on
the space of p-spheres in S3 for p 2 f0; 1; 2g. The vector calculus of p-spheres involves a
cross product and a dot product that act on the algebraic representations of oriented p-spheres
in S3. The cross-product of two intersecting circles, for example, produces the sine of their
intersection angle multiplying the unique circle orthogonal to both circles. On the other hand,
their dot product produces the cosine of the intersection angle. In Section 3 we use this quater-
nionic formalism to describe the geometry of rolling spheres in both the smooth and discrete
settings using quaternionic connections. The quaternionic formalism we present here should
be of independent geometric interest—our experience is that it is geometrically meaningful as
well as quite efficient and easily implemented on a computer for the algorithmic manipulation
of spheres and circles.

Recently, several authors have studied fundamental properties of quaternionic Möbius
transformations. Fixed points and conjugacy classes of Möbius transformations of S3 have
been characterized in [25, 26]. Quaternionic holomorphic geometry provides an elegant
description of surfaces in 3-space and 4-space that has been especially fruitful in the study of
Willmore surfaces [24, 27]. In this context the quaternionic realization of the space of oriented
2-spheres plays a central role.
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2 Möbius Geometry of S3 with Quaternions
It is natural to study the discrete Willmore energy in the Möbius geometry of S3 for which
we will employ a quaternionic projective model. We begin with a review of the quaternionic
projective geometry of HP1 and by restricting the group of Möbius transformations to those
fixing a three-sphere S3 inside of S4 we shall obtain a quaternionic projective model of the
Möbius geometry of S3.

Quaternions
The quaternions are the four-dimensional R-algebra generated by the symbols i; j; k with the
relations

i2 D j 2 D k2 D �1; ij D k; jk D i; ki D j:

We denote the quaternions by

H WD faC bi C cj C dk j a; b; c; d 2 Rg;

and for an element q D aC bi C cj C dk we define real and imaginary parts

Re.q/ WD a; Im.q/ WD bi C cj C dk:

We also make use of the conjugate Nq WD a � bi � cj � dk—as a consequence of q Nq D jqj2

the inverse is given by q�1 D Nq=jqj2 for q ¤ 0. Quaternion multiplication is associative,
but non-commutative, and we identify H as a real vector space with R4. The real numbers
are identified with R 1, and the subspace of purely imaginary quaternions ImH is identified
with R3 in the obvious way. Therefore, we can express a quaternion q 2 H as q D a C u

for a 2 R; u 2 R3. We will often make use of the fact that quaternion multiplication encodes
both the inner product and the cross product of vectors in R3: for x; y 2 R3 we have that

xy D �hx; yi C x � y:

For a more detailed exposition of the quaternions and their relationship to rotations in three-
dimensions and Möbius geometry in four-dimensions, we recommend the first two chapters
of Burstall et al. [24].

Möbius transformations preserving S3

The quaternionic projective model of S4 is based on the observation that HP1 is conformally
equivalent to S4 [24, Section 3.1]. The quaternionic projective line HP1 is defined as the
set of quaternionic lines in H2 going through the origin. Here, we consider H2 as a right-
quaternionic vector space, meaning that scalar multiplication acts by multiplication on the
right. A quaternionic line is generated by a non-zero vector  2 H2, and we denote it by

 H D f � j � 2 Hg � H2:

This defines a canonical projection � W H2 n f0g ! HP1 given by  7!  H. Considering
S4 D R4[f1g as the one-point compactification of Euclidean 4-space, an explicit conformal
identification of S4 with HP1 is given by the mapping

q 2 R4 7!
�
q

1

�
H; 1 7!

�
1

0

�
H:
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The inverse of this map is given by stereographic projection to R4:�
p
q

�
H 2 HP1 n f

�
1
0

�
Hg 7! pq�1 2 H Š R4:

Notice that this map is well-defined since .p�/.q�/�1 D pq�1 for any � 2 H. The group
GL.2IH/ � H2�2 of invertible quaternionic 2�2matrices acts on HP1 by A. H/ D .A /H,
A 2 GL.2IH/. After stereographic projection, this action looks like a quaternionic fractional
linear transformation

A D

�
a b

c d

�
2 GL.2IH/; A

��
p
1

�
H
�
D

�
apCb
cpCd

�
H D

�
.apCb/.cpCd/�1

1

�
H:

On S4 this action represents a Möbius transformation—that is, for each A 2 GL.2IH/ the
corresponding action 'A.p/ D .ap C b/.cp C d/�1 defines a conformal diffeomorphism
of R4 [ f1g. Moreover, all orientation preserving conformal diffeomorphisms of S4 are
realized this way and the representation of a Möbius transformation is unique up to a real
scale [28]. An important observation is that for any point  H 2 HP1 we can always find
a matrix A 2 GL.2IH/ so that A. H/ D

�
1
0

�
H, or said another way, we can always use a

Möbius transformation of S4 to maneuver any desired point in space to infinity.
Starting from this identification of S4 with HP1, we will now consider a round 3-sphere

sitting inside of it so that we may describe the geometry of spheres in three-dimensions using
quaternions. A three-sphere inside of S4 is determined by the isotropic lines of an indefinite
Hermitian inner product on H2 [24, Chapter 10]. We fix the indefinite Hermitian inner product
(thereby fixing a particular 3-sphere)

h

�
 0
 1

�
;

�
'0
'1

�
i WD N 0'1 C N 1'0: (4)

A straightforward computation shows that for  2 H2 with h ; i D 0 we have  D
�
p
1

�
�

for some p 2 R3 and � 2 H or
�
1
0

�
� for some � 2 H. In case the notation is unfamiliar,

when we write
�
p
1

�
we mean the element of H2 where the first component is purely imaginary

p 2 R3 � H and the second component is real (and equal to 1 2 R � H). We identify these
quaternionic lines with the point p 2 R3. In the case

�
1
0

�
� we consider the quaternionic line

as a representative of the point at infinity 1 of H. These isotropic lines form a conformal
model of S3 that we explain in detail in what follows:

S3 WD
˚
 H 2 HP1 j h ; i D 0

	
(5)

D

n�
p

1

�
H j p 2 R3 Š ImH

o
[

n
1

o
: (6)

A unitary transformation A is an invertible linear map A 2 GL.2IH/ satisfying hA ;A'i D
h ; 'i for all  ; ' 2 H2, and we denote the group of all such transformations as Sp.1; 1/.
They satisfy A�A D I where I is the identity matrix and A� is the adjoint with respect to the
indefinite Hermitian form:

A� D

�
Nd Nb

Nc Na

�
for A D

�
a b

c d

�
: (7)

Evidently, the action of Sp.1; 1/ preserves S3 and since the restriction of a conformal map
of S4 to S3 is still conformal, we deduce that elements of Sp.1; 1/ can be identified with
orientation preserving Möbius transformations of S3.
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These transformations can be written in terms of simpler, geometrically meaningful
components associated with the generators of the group of Möbius transformations (see
Appendix A for a proof).

Proposition 2.1. Let A 2 Sp.1; 1/. Then there exists unique x; y 2 R3 and � 2 H satisfying

A D

�
1 0

y 1

��
� 0

0 N��1

��
1 x

0 1

�
: (8)

The factors have straightforward geometric interpretations. For x 2 R3 the matrix

Tx WD

�
1 x

0 1

�
; Tx

�
p

1

�
H D

�
p C x

1

�
H (9)

describes the translation by x. For � 2 H the matrix

R� WD

�
� 0

0 N��1

�
; R�

�
p

1

�
H D

�
�p

N��1

�
H D

�
�p N�

1

�
H (10)

describes the stretch rotation given by conjugation with �. Lastly, for y 2 R3 the matrix

OTy WD

�
1 0

y 1

�
; OTy

�
p

1

�
H D

�
p

1C yp

�
H D

�
.p�1 C y/�1

1

�
H (11)

describes the inversion in the unit sphere, composed with a translation by y, followed by
another inversion in the unit sphere. Analogous to how a translation shifts the origin, the
transformation OTy shifts the infinity point.

Remark 2.2. Each of the terms, OTy , R�, Tx , in Proposition 2.1 describes an orientation
preserving Möbius transformations of S3, hence the group Sp.1; 1/ contains only orienta-
tion preserving Möbius transformations of S3. Specifically, inversion in a 2-sphere is not an
orientation preserving Möbius transformation and thus not representable by an element of
Sp.1; 1/.

To obtain all Möbius transformations of S3 one needs to consider the larger group

MRob.3/ WD
n
A 2 H2�2 j A�A D ˙I

o
: (12)

The orientation reversing Möbius transformations of S3 are those elements satisfying
A�A D �I.

Remark 2.3. Both Sp.1; 1/ and MRob.3/ are double covers of the group of orientation pre-
serving and all Möbius transformations of S3, respectively, and so one should consider the
quotients of these groups by the order two subgroup fCI;�Ig if working with the double cover
directly is not desired.

The group MRob.3/ has two connected components with Sp.1; 1/ being path connected to the
identity. Therefore, the Lie algebra of MRob.3/ is equal to the Lie algebra of Sp.1; 1/ denoted

sp.1;1/ D
˚
Y 2 H2�2 j Y� C Y D 0

	
: (13)
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Elements of the Lie algebra Y 2 sp.1;1/ can be integrated into a 1-parameter family of
Möbius transformations

t 7! exp.tY/ (14)
using the exponential map

exp W sp.1;1/! Sp.1; 1/ expY WD
1X
nD0

Yn

nŠ
: (15)

Elements of the Lie algebra describe infinitesimal Möbius transformations of S3. The vector
field associated with Y 2 sp.1;1/ is given by

VY.p/ D
d

dt

ˇ̌̌̌
tD0

exp.tY/ � p 2 TpS3 � TpHP1: (16)

In this way sp.1;1/ is identified with the algebra of Möbius vector fields of S3. Without fur-
ther choices (such as the choice of a point at infinity), we do not have a canonical identification
of the tangent spaces TpHP1 in terms of quaternions. We will not need such a description of
the tangent space in this paper, so we point the interested reader to [24, Chapter 3.1] and [29]
for further details.

Two important operations on matrices are the inner product on H2�2:

hA;Bi D �1
2

trR.AB/: (17)

and the cross product on H2�2 defined via the commutator:

A � B WD 1
2
ŒA;B� D 1

2
.AB � BA/; (18)

for A;B 2 H2�2. We will also need the anti-commutator

fA;Bg D ABC BA:

Conveniently, the product of two matrices A;B 2 H2�2 can be written as:

AB D 1
2
fA;Bg C A � B: (19)

For matrices describing inversions in spheres 1
2
fA;Bg D �hA;BiI, where I 2 H2�2 is the

identity matrix. (see Remark A.2).
To conclude this section, we note that when transforming the coordinates by a Möbius

transformation A 2 MRob.3/ the action of another Möbius transformation B 2 MRob.3/ must
be conjugated by A to describe the same Möbius transformation in the new coordinates:

QB D ABA�1: (20)

See Figure 3 for an illustration of the action of conjugation by a Möbius transformation.
This relationship is of great practical importance. Any argument involving Möbius invariant
quantities can be answered assuming a convenient Möbius transformation. For example, the
angle between two intersecting spheres is the dihedral angle between the two planes that result
from sending a point common to both spheres to infinity.
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A�1 A

B

QB

Fig. 3 Conjugating a matrix B by a Möbius transformation A corresponds to transforming the inputs and outputs of
the Möbius transformation described by B into new coordinates determined by A.

2.1 Spaces of Spheres in S3

In this section we describe how to realize the space of oriented p-spheres for p 2 f0; 1; 2g
inside of H2�2 in a geometric way by associating Möbius transformations with each p-sphere
in S3. These constructions are motivated by the natural association of p-spheres associated
with cells of a simplicial surface: a circumsphere for each unoriented edge, a circumcircle for
each face, and a point pair for each oriented edge. In Section 2.2 we use the algebraic structure
on H2�2 to manipulate these p-spheres algebraically in a geometrically intuitive way.

To wit, each oriented 2-sphere is associated with the Möbius transformation of inversion
in that sphere yielding the “space of spheres” inside H2�2. With each oriented circle in S3

we define the inversion in the circle as the Möbius transformation that when restricted to any
2-sphere containing the circle is an inversion in the circle in S2. It can also be computed by
composing the inversions in spheres orthogonally intersecting in the circle. Describing this
circle inversion as an element of H2�2 realizes the “space of circles” inside of H2�2. Finally,
the inversion in an oriented point pair is the Möbius transformation that when restricted to
any circle containing the pair of points is the inversion in a pair of points in S1. It is equal
to the Euclidean inversion x 7! �x after sending the pair of points to the origin and infinity
respectively. This realizes the space of oriented point pairs inside H2�2. In these cases, the
sign of the corresponding matrix will determine the orientation of the sphere. We visualize
and describe in more detail all of these Möbius transformations in the following sections.

Space of 2-spheres
Spheres in S3 are either 2-spheres or 2-planes in R3, depending on whether the sphere passes
through the point at infinity. To determine the conditions for S 2 H2�2 to describe the inver-
sion in an oriented sphere we consider the inversion in an oriented sphere OS � R3 with mean
curvature h and passing through the origin where it has unit normal n 2 S2 � R3. When
h ¤ 0 the center of OS is given by

m D �
1

h
n (21)

and so the sphere inversion QS about OS is given by

QS W R3 [ f1g ! R3 [ f1g; QS.y/ D

(
y � 2hn; yin if h D 0;
mC 1

h2
y�m

ky�mk2
if h ¤ 0:

(22)
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Fig. 4 The inversion in a 2-sphere is well described in terms of a point p on the sphere, its normal at p and its mean
curvature h. This description works uniformly to describe inversions in round spheres or reflections through planes.

This sphere inversion can be represented as matrix multiplication by

S D

�
n 0

�h �n

�
: (23)

Indeed, it is easy to verify that

S

�
y

1

�
D

�
QS.y/

1

�
.�hy � n/: (24)

By conjugating S by the Möbius transformation Tp describing translation by p we deduce
that the inversion in the oriented sphere in R3 with mean curvature h that passes through the
point p 2 R3 and at p has unit normal n is represented by the matrix

S D Tp

�
n 0

�h �n

�
T�1p : (25)

A direct computation shows that all of the matrices describing sphere inversions satisfy
trR S D 0, S� D S, and S2 D �I. Conversely, these three equations characterize all of the
inversions in 2-spheres in S3. In Appendix A.2, we show that any such matrix describes an
oriented 2-sphere in S3 and that we can identify the space

S WD
˚
S 2 H2�2 j trR S D 0; S� D S; S2 D �I

	
� MRob.3/: (26)

with the space of oriented 2-spheres in S3.
Remark 2.4. One can recover the sphere from the eigenlines of the linear operator S: that
is, OS D f H 2 S3 j hS ; i D 0g. Moreover, B.S/ D f H 2 S3 j hS ; i < 0g

is an open ball in S3. Both S and �S determine the same round 2-sphere, but they bound
complimentary round balls in S3 since B.�S/ D S3 n B.S/. Taking this round ball bounded
by OS as its interior determines the orientation of the 2-sphere.

Space of circles
Just as we identified spheres with the inversion in them we now identify circles with the
Möbius transformation which, restricted to any 2-sphere containing the circle is an inversion
in the circle. Since this is a Möbius geometric definition, we may transform the circle into
a line by sending a point on the circle to infinity. Any sphere containing the circle will then
be sent to a plane containing the line. The definition of the inversion in the line states that
the restriction to any plane containing the line is equal to the reflection about the line. In
other words, the inversion in a line is 180ı rotation around the line. By reversing the Möbius
transformation mapping the circle into the line we see that the inversion in a circle can also
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be thought of as a 180ı rotation around the circle. Figure 5 (left) illustrates the 180ı degree
rotation around an oriented line in R3 that coincides with the Euclidean rotation about the line.
Figure 5 (right) illustrates the 180ı rotation about the oriented circle defined as the rotation
around the oriented line that the circle transforms into by sending one of the points on the
circle to infinity.

Fig. 5 It is useful to describe the 180ı rotation around a circle (or line) in S3 in terms of a point p on the circle, its
tangent at p, and its curvature binormal.

In the case when the circle in S3 is a line in R3 it is easy to see that the 180ı rotation
around the line can also be computed as the composition of the inversion in two planes orthog-
onally intersecting in the line and that this doesn’t depend on the choice of planes. Möbius
geometrically, this means that inversion in a circle can be computed as the composition of
the inversions in any two spheres orthogonally intersecting in the circle. This can be done
explicitly by using the identification of the space of oriented spheres with S.

Consider an oriented circle in R3 passing through the origin with unit tangent t and
mean curvature vector �n. We can write the 180ı rotation about the circle as the orthogonal
intersection of the sphere

S D

�
n 0

� �n

�
(27)

and the plane defined by the binormal b D t � n

P D

�
�b 0

0 �b

�
: (28)

The 180ı degree rotation C about the circle is the composition of the reflection in the plane
P and the inversion S in the sphere:

C D SP D

�
t 0

��b t

�
: (29)

To describe a circle that instead passes through a point p 2 R3 instead of the origin, the
180ı-rotation around the circle will be given by

C D Tp

�
t 0

��b t

�
T�1p : (30)

A direct computation shows that all such matrices satisfy C� D �C and C2 D �I. In
Appendix A.2 we also show that any such matrix describes an oriented circle in S3 and that
we can identify the space

C WD
˚
C 2 H2�2 j C� D �C; C2 D �I

	
� MRob.3/: (31)
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with the space of oriented circles in S3.
Notice also that C � sp.1;1/, allowing us to interpret an element C 2 C also as an

infinitesimal Möbius transformation, generating the one-parameter group of rotations around
the oriented circle. Figure 6 visualizes the Möbius vector field VC describing the infinitesimal
rotation around a circle C 2 C. The orientation of the circle is encoded in the sign of C since
the vector fields V�C D �VC differ by a sign and so the 1-parameter family of rotations they
generate describe the rotations around the circle in two opposite directions.

Fig. 6 The orientation of a circle associated with C 2 C can be determined by looking at the Möbius vector field VC

it generates. The vector field describes an infinitesimal rotation around the circle or line and the orientation is chosen
so that the rotation is clockwise around the circle.

Space of point pairs
Lastly, we identify each pair of points with the Möbius transformation that when restricted
to any circle containing the two points is an inflection in the pair of points. We can first
map the point pair to the origin and infinity by a Möbius transformation. All of the circles
containing the point pair are mapped into lines going through the origin and the inversion
in the pair of points is now just the Euclidean inversion x 7! �x. This does not depend on
the choice of Möbius transformation used to send the point pair to the origin and infinity
since the Euclidean inversion is invariant under all stretch rotations (the subgroup of Möbius
transformations fixing the origin and infinity).

Fig. 7 An inversion in a pair of points is the Möbius transformation defined so that the restriction on every circle
containing the two points is the inversion in a pair of points in S1. When both of the points are in R3 the inversion
in them can be expressed in terms of one of the points p1 and the difference of the point positions p2 � p1.

To determine an explicit expression for the inversion U 2 H2�2 in a pair of points
.p1; p2/ 2 R3 � R3, p1 ¤ p2, let pi D

�
pi
1

�
H for i D 1; 2. As a linear operator acting on

homogeneous coordinates, U is defined by its action on a basis of H2. Define the action of U
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on p1 to be equal to minus the identity and the action of U on p2 to be equal to the identity.
This clearly defines a Möbius transformation that is Möbius invariantly associated with the
pair of points, and one can readily check that it agrees with the inversion in the pair of points
by sending them to the canonical locations of the origin and infinity. Starting from the explicit
ansatz

U D Tp1

�
1 0

2.p2 � p1/
�1 �1

�
T�1p1 (32)

it is straightforward to verify that Ujp1 D �I and Ujp2 D I by evaluating U on vectors  i 2 pi
for i D 1; 2. All such matrices U associated with oriented point pairs satisfy U2 D I and
U� D �U. In Appendix A.2 we show that any such matrix describes an oriented point pair in
S3 and that we can identify the space

P WD fU 2 H2�2 j U� D �U; U2 D Ig � MRob.3/: (33)

with the space of oriented point pairs in S3.
The property of this Möbius transformation that enables it to interact well with the inver-

sions in spheres and circles is that the Euclidean inversion can be computed by composing the
inversion (reflection) in a plane going through the origin and the 180ı rotation about the line
orthogonal to the plane through the origin. Thus, since any pair of points can be sent to zero
and infinity by a Möbius transformation this implies that the inflection in two points can be
computed as the composition of a sphere inversion and a circle inversion for any sphere-circle
pair which intersect orthogonally in the pair of points (see Proposition 2.9).

The space of point pairs also satisfies P � sp.1;1/ and so we can interpret each point
pair as an infinitesimal Möbius transformation, generating the 1-parameter subgroup of scal-
ing transformations after using a Möbius transformation to send the points to the origin and
infinity. In Figure 8 we visualize the vector field VU D �V�U for the origin-infinity point
pair. The vector field is the radial vector, which is a harmonic vector field.

Fig. 8 Since P � sp.1;1/ every element U 2 P generates a Möbius vector field VU that corresponds to an
infinitesimal scaling transformation in any affine chart where the pair of points are at zero and infinity.

Since Möbius transformations preserve harmonic vector fields, we deduce that the vector
field associated with an oriented point pair .p1; p2/ is also a harmonic vector field on S3 n
fp1; p2g with a source and sink at p1 and p2, respectively. Integral curves of this vector field
are visualized in Figure 9.

2.2 Configurations of Pairs of 2-Spheres in S3

To understand the geometry of rolling spheres in the discrete setting we characterize config-
urations of pairs of spheres in S3 up to Möbius transformation and how they may be mapped
into one another through orthogonal trajectories. We accomplish this exploiting the algebraic
structure of the space of 2-spheres as described in the previous section.

To understand the possible configurations of pairs of 2-spheres it is useful to first con-
sider configurations of pairs of circles in S2. These can always be arranged by a Möbius

13



Fig. 9 Integral curves of the harmonic vector field associated with an oriented pair of points visualized on a 2-sphere.
All of the integral curves are oriented circles going through the pair of points. The vector field has a source at the
point associated with the �1 eigenvalue and a sink at the point associated with theC1 eigenvalue.

Fig. 10 Pairs of circles in S2 can always be arranged by a Möbius transformation into a canonical form where the
pencil of circles that they generate takes a simple form. Left: if the circles intersect in two points then they generate
an elliptic pencil of circles that can be arranged to look like Euclidean lines intersecting in a single point. Middle: if
the circles intersect in a single point then they generate a parabolic pencil that can be arranged to look like parallel
Euclidean lines. Right: if the circles are disjoint then they generate a hyperbolic pencil that can be arranged to look
like Euclidean concentric circles.

transformation into one of three configurations illustrated in Figure 10: they can be (1) lines
intersecting in a single point, (2) parallel lines, or (3) concentric circles. These are character-
ized by the number of intersection points, two, one, and none. More coarsely, configurations
of pairs of circles in the plane are Möbius equivalent to either concentric circles or a pair of
lines. A completely analogous characterization of configurations of pairs of 2-spheres in S3

exists as well: configurations of pairs of 2-spheres in S3 can always be arranged by a Möbius
transformation into one of the following three situations. They can be

1. planes that intersect in a line
2. parallel planes,
3. concentric spheres.

As in the case of circles in S2 the configurations of pairs of 2-spheres are characterized by
their intersections: in case (i) the two spheres intersect in a circle and we say that they lie in an
elliptic sphere pencil. An elliptic sphere pencil consists of all 2-spheres containing a shared
circle. in case (ii) we say that two spheres lie in a parabolic sphere pencil intersecting in only a
single point. Such a pencil consists of all 2-spheres going through a shared intersection point
with the same normal vector there. Parallel planes form a parabolic sphere pencil with the
intersection point at infinity. In case (iii) the two spheres have an empty intersection and we
say that they lie in a hyperbolic sphere pencil. Such a pencil consists of all 2-spheres about
which a sphere inversion swaps a shared pair of points. Concentric spheres about the origin
make up the hyperbolic sphere pencil determined by, and swapping, zero and infinity.
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Canonical Form
If the pair of spheres have non-empty intersection then we can use a Möbius transformation
to send one of their intersection points to infinity and in the process transform both of the
spheres into planes. The planes are either parallel or they intersect in a line.

Fig. 11 A geometric construction used to show that any pair of disjoint spheres can be arranged by Möbius transfor-
mation of S3 so that they look like concentric spheres. The dashed line represents the normal circle N that intersects
S1 and S2 orthogonally.

To see that disjoint 2-spheres can be canonically transformed into concentric 2-spheres
consider the following construction. Use a Möbius transformation to transform one of spheres
into a plane. The second sphere must necessarily still be a round sphere. Let N be the normal
line that intersects the plane and the second sphere orthogonally, and let† be a further sphere
which intersects the normal line, plane and second sphere orthogonally—this can be achieved
by making a suitable choice among the spheres centered on the intersection point of the
normal line and the plane. Now use a Möbius transformation to send N and † to a line and
a plane respectively. This transforms the plane and the second sphere into two spheres that
intersect a plane (transformed†) along with a normal line to the plane orthogonally. As such,
the two spheres must be concentric. For a 2-dimensional illustration see Figure 11.

Parameterizing Pencils of Spheres
In essence the pencil of spheres connecting a pair of spheres S1; S2 2 S can be parameterized
as

S.�/ D S1 C � S2 (34)
in each of the three cases. Even though S.�/must be normalized to lie in S, the unnormalized
version still describes the same Möbius transformation on S3. Although there is no � 2 R so
that S.�/ describes the same Möbius transformation as S2, notice that we still have that after
normalization

lim
�!1

S.�/

jS.�/j
D S2:

The type of pencil can be determined by the number of points (spheres of zero radius) occur-
ring in the pencil: zero for elliptic, one for parabolic, and two for hyperbolic pencils (for
hyperbolic sphere pencils, the parameterization is only valid for a certain range of � ). Since
a non-degenerate sphere is represented by S 2 S satisfying hS; Si D 1, while a degenerate
sphere (a point) is represented by ‰ 2 L � H2�2 (see Appendix A.1 for the definition of
L) satisfying h‰;‰i D 0, the number of points that appear in the pencil can be decided by
looking at the zeros of the quadratic equation

0 D hS.�/; S.�/i D 1C 2�hS1; S2i C �
2:
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The number of zeros is determined by the sign of the discriminant

4hS1; S2i
2
� 4 (35)

This parameterization of sphere pencils describes geodesics up to parameterization in S.
To directly map S1 into S2 in this manner one may use the Möbius transformation

Q D I � S2S1: (36)

Indeed, since
QS1 D S1 C S2 D S2Q

one finds that QS1Q�1 D S2. To see that this transformation describes motion inside the
sphere pencil by orthogonal trajectories we will analyze this transformation for pairs of
spheres in each of the three kinds of sphere pencils separately. In all cases S1�S2 is an element
of sp.1;1/ describing the Möbius vector field orthogonal to every sphere of the pencil.

Elliptic Sphere Pencils
Elliptic sphere pencils are the most relevant configuration for the analysis of the discrete
Willmore energy. Suppose S1; S2 2 S generate an elliptic sphere pencil. Using a Möbius

transformation we may assume that they describe planes intersecting in a line through the
origin

Si D

�
ni 0

0 �ni

�
for some choice of ni 2 S2 � R3. Therefore,

S1S2 D � cos˛ IC sin˛ C;

where ˛ 2 Œ0; �/ is the angle between the two planes intersecting in the line C. Here C 2 C
describes the intersection line

C D

�
t 0

0 t

�
with t 2 S2 2 R3 the unit vector in the direction n1 � n2. Since C2 D �I we can compute
the exponential map in closed form

exp.� C/ D cos � IC sin � C

for � 2 R. Since these are all diagonal matrices the action of exp.�C/ on points in S3 is a
rotation by 2� around C. Hence the Möbius transformation exp.˛

2
C/ transforms S1 onto S2
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via orthogonal trajectories. When we say that this describes motion via orthogonal trajectories
we mean that the family of spheres

St D exp
�
t˛
2
C
�
S1 exp

�
�
t˛
2
C
�

from t D 0 to t D 1 interpolates between S1 and S2 inside their shared elliptic sphere
pencil. Under this mapping, points in S1 follow circular trajectories that are orthogonal to the
trajectory of spheres St in the sphere pencil. So we have shown

Proposition 2.5. Let S1; S2 2 S be two spheres intersecting in a circle C. Then

hS1; S2i D cos˛; S1 � S2 D sin˛ C (37)

where ˛ is the intersection angle between the two spheres. Moreover, the rotation around C
by an angle ˛ transforms S1 into S2 and is equal to the Möbius transformation exp

�
˛
2
C
�
.

Applying these insights to the expression Q we have

Q D I � S2S1 D .1C cos˛/IC sin˛ C D 2 cos ˛
2

�
cos ˛

2
IC sin ˛

2
C
�
D 2 cos ˛

2
exp

�
˛
2
C
�
:

Since the scale factor is irrelevant, we see that Q is the Möbius transformation that maps S1
into S2 via orthogonal trajectories.

Parabolic Sphere Pencils
Suppose S1; S2 2 S generate a parabolic sphere pencil. Up to a suitable Möbius trans-

formation we may assume that they are parallel planes defined by the same normal vector
n 2 R3:

Si D

�
n 2�i
0 �n

�
for distinct �i 2 R. Here �i specifies the planes as the �i level sets of hn; �i. Therefore,

S1S2 D

�
�1 2.�2 � �1/n

0 �1

�
D �IC On:

Here On 2 V1 (see Appendix A.1 for the definition of V1) is an infinitesimal translation since
the shared intersection point is at infinity. Since On is nilpotent

exp.� On/ D IC � On D

�
1 2�.�2 � �1/n

0 1

�
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is a translation by 2�.�2 � �1/ in the direction from the plane S1 to S2. In particular, exp On
2

describes the translation mapping S1 to S2 and so we have shown

Proposition 2.6. Let S1; S2 2 S be spheres intersecting in a single point p 2 S3 with the
same oriented normal there. Then

hS1; S2i D 1 S1 � S2 D On 2 Vp

and On is an infinitesimal translation when p is sent to infinity and exp On
2

is the Möbius
transformation mapping S1 to S2 by orthogonal trajectories.

Applying this proposition to the expression Q we find that

Q D I � S2S1 D 2IC S1 � S2 D 2T.�2��1/n D 2 exp On
2

which shows that Q is the desired Möbius transformation mapping S1 to S2 via orthogonal
trajectories.

Hyperbolic Sphere Pencils
Now suppose S1; S2 2 S describe disjoint oriented spheres that generate a hyperbolic sphere
pencil. By a suitable Möbius transformation we may assume that they are concentric spheres

centered at the origin

Si D

�
0 �i
�
1
�i

0

�
for some choice of �i 2 R for i D 1; 2. The spheres they represent are those defined by
jxj2 D j�i j

2.
Note that the orientations of the two spheres must be compatible, in the sense that the signs

of �1 and �2 must be equal. Otherwise there does not exist an orientation preserving Möbius
transformation mapping S1 to S2. To avoid these undesirable configurations one needs to
assume that the spheres are oriented consistently, and for simplicity, we will take �1; �2 > 0.
For disjoint spheres that are not in canonical form, consistent orientation is equivalent to the
balls bounded by the oriented spheres intersecting in a round ball.

The product of the concentric spheres is

S1S2 D

�
��1=�2 0

0 ��2=�1

�
D cosh � IC sinh � U

with � D log �2
�1

and where U 2 P is

U D

�
1 0

0 �1

�
;

describing the .0;1/ point pair.
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Proposition 2.7. Let S1; S2 2 S be disjoint oriented spheres. If the balls bounded by the
oriented spheres have non-empty intersection then they generate a hyperbolic sphere pencil
defined by a pair of points U 2 P and

hS1; S2i D cosh � S1 � S2 D sinh � U

for some � 2 R and exp.�
2
U/ is the Möbius transformation mapping S1 to S2 by orthogonal

trajectories.
Applying this proposition to the expression Q we find that

Q D I�S2S1 D .1Ccosh �/ICsinh � U D 2 cosh �
2
.cosh �

2
ICsinh �

2
U/ D 2 cosh �

2
exp.�

2
U/:

This shows that Q is the desired Möbius transformation that maps S1 to S2 via orthogonal
trajectories.

Möbius Spheres Algebra
After the consideration of products of spheres in the previous section we now consider prod-
ucts of circles and point pairs. The following result follows from the same reasoning used to
prove Proposition 2.5.

Fig. 12 Main operations in the algebra of circles, spheres, and point pairs induced by the realizations into H2�2.

Proposition 2.8. Let C1;C2 2 C be two circles that intersect in two points. Their product is

C1C2 D �hC1;C2i IC C1 � C2 (38)

and
hC1;C2i D cosˇ; C1 � C2 D sinˇ C (39)

where ˇ is the intersection angle of the two circles and C is the unique circle normal to S at
the two intersection points with S the unique sphere containing both C1 and C2.

We also have that the product of any intersecting sphere and circle is equal to the oriented
point pair making up the intersection:
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Proposition 2.9. Consider a sphere S 2 S along with a pair of points U 2 P contained in
S. Then the normal circle C 2 C to the sphere at the two points is equal to the product of the
sphere and the point pair

C D SU D US: (40)
Moreover, CS D SC D �U and S D CU D UC.

Proof. It is straightforward to verify that S and C commute with U since the sphere and
circle go through the points described by U. From S� D S and U� D �U we deduce that
.SU/� D �SU and that .SU/2 D �I, and so SU 2 C and describes a circle going through the
points i and j . Since the diagonal entries of the matrix representation of a sphere describe
its normal vectors, whereas the diagonal entries of a circle describe its tangent vectors, we
conclude that C D SU is the desired normal circle orthogonal to S through the oriented point
pair U.

3 Rolling Sphere Connections
With the quaternionic description of spheres in S3 in place, it is easy to describe the geometry
of a rolling sphere congruence over a surface. In this section we give the geometric interpre-
tation of both the smooth and discrete Willmore energies as the curvature of a connection
obtained by rolling spheres over the surface. The smooth description will be formulated using
the language of connections and differential forms—[30, Chapter 7] and [31, Chapter 4] are
useful references for these topics.

3.1 Smooth Theory
Let f W M ! R3 be an immersion of a compact orientable Riemann surface. Recall that
we denote the induced area 2-form by �f 2 �2.M/. The mean curvature sphere congruence
S WM ! S of the immersion is defined to be

S D Tf

�
n 0

�H �n

�
T�1f (41)

where H is the mean curvature of the immersion, and n W M ! S2 is the normal of the
immersion. The tangent plane congruence P WM ! S is given by

P D Tf

�
n 0

0 �n

�
T�1f : (42)

Consider the connections rP D d � 1
2
P dP and rS D d � 1

2
S d S on H2 �M , the trivial

H2-bundle over M .
The tangent plane congruence is parallel with respect to rP (rP P D 0) and so the

trajectories of the induced parallel transport move orthogonally to the tangent planes (see
Theorem 3.2). The well-known fact that the curvature of the Levi-Civita connection yields
the Gauss curvature form finds its expression in the curvature 2-form of the connection rP:

R.rP/ D �KN �f : (43)

To make the expression of the curvature above precise, we need to review some basic
definitions about the curvature of a connection on a vector bundle. The curvature 2-form of a
connection r on a vector bundle E ! M is defined to be the endomorphism valued 2-form
R 2 �2.M IEndE/ via the equation r.r / D R for any  2 �E [31, Definition 4.1.5].
Recall that geometrically, the curvature tensor measures the (infinitesimal) parallel transport,
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with respect to r, around small loops based in M . Since we are working with a quaternionic
connection on the trivial H2-bundle, we can identify the quaternionic-linear maps in EndE
with H2�2 and thus the curvature 2-form of a quaternionic connection can be considered as
a quaternionic matrix-valued 2-form R 2 �2.M IH2�2/. If the connection 1-form further
takes values in some subgroup of H2�2, the curvature 2-form will take values in the same
subgroup—for example, since �P dP 2 �1.M I sp.1;1// the curvature 2-form of rP is an
sp.1;1/-valued 2-form. Since rP provides an extrinsic description of rolling tangent planes,
the curvature 2-form includes an infinitesimal rotation about the normal line N in addition to
the curvature of the Levi-Civita connection.

To extend this picture to the mean curvature spheres we just need to consider the connec-
tion rS D d � 1

2
S d S instead. Just as before, the mean curvature spheres are parallel with

respect to rS (rS S D 0) and so the trajectories of the parallel transport of rS are orthogonal
to the mean curvature spheres. The curvature of rS will now compute the Willmore integrand

R.rS/ D .H 2
�K/NS �f : (44)

This extrinsic description of the Willmore integrand comes multiplied with NS, describing the
rotation around a normal circle to the immersion.

To study the connections rP and rS simultaneously we consider the connection r† D
d� 1

2
†d† induced by an arbitrary, but otherwise fixed, tangent sphere congruence† WM !

S. Such a sphere congruence is of the form

† D Tf

�
n 0

�h �n

�
T�1f (45)

for some smooth function h W M ! R. Since �1
2
†d† 2 �1.M I sp.1;1// the parallel

transport of r† along a path 
 W Œ0; 1� ! M is a Möbius transformation P
 2 Sp.1; 1/ of
S3.

Fig. 13 Using the connection r† to identify infinitesimally close spheres of† by Möbius transformations we find
that the parallel transport of points in S3 follows trajectories that are orthogonal to the sphere congruence. Visualized
in red is the parallel transport of points obtained by rolling the tangent plane congruence (right) or a tangent sphere
congruence (left) over a sphere.

Proposition 3.1. The sphere congruence † is parallel with respect to r†.

Proof. Recall that the covariant derivative of an endomorphism fieldA 2 � EndH2 is defined
naturally by .r†A/ WD r†.A /�Ar† : For a nowhere vanishing section  WM ! H2

.r††/ D r†.† / �†r† (46)

D
�
d � 1

2
†d†

�
.† / �†

�
d � 1

2
†d†

�
 (47)
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D d.† / �†d � 1
2
d† � 1

2
d† (48)

D 0: (49)

We will use the previous result to better understand the connection r†. Since connections
and parallel transport are two descriptions of the same thing, we will understand the geome-
try of r† through its parallel sections. In this case, by considering the pullback along 
 , the
parallel transport along 
 reduces to the caseM D Œ0; 1�, the interval parameterizing 
 . Since
sections are H2-valued, we will need the canonical projection � W H2 n f0g ! HP1 Š S4,
defined in Section 2, to describe the parallel sections in terms of geometric properties in S3.

Theorem 3.2. Let† be a sphere congruence over an interval Œ0; 1� andr† be the connection
on Œ0; 1� � H2 given by r† D d � 1

2
†d†. Furthermore, let  W Œ0; 1� ! H2 be parallel

such that �. 0/ lies on †0. Then �. t / lies on †t for all t and the trajectory intersects the
spheres orthogonally.

Proof. Since �. 0/ lies on †0 we have that †0 0 D � 0n0 where n0 is the normal of †0
at  0. † is parallel by Proposition 3.1. Since  is also parallel

r
†
@
@t

.† C  n0/ D 0 (50)

and so by the existence and uniqueness of ODEs †t t D � tn0 for all t 2 Œ0; 1�.
To simplify subsequent computations we translate everything so that for t D 0, with

 t D

�
ft
1

�
�t we have  0 D

�
0

1

�
where f W Œ0; 1� ! R3 with f0 D 0. To extract the geometric properties of the trajectory in
terms of the curve f we need to determine how † acts on  0. If we differentiate in time

†0 C† 0 D .† /0 D  0.�n0/: (51)

Since  is parallel
0 D  0 � 1

2
††0 H) †0 D �2† 0; (52)

and hence by Equation 51† 0 D  0n0 . The first row of†0 00 D  
0
0n0 reads n0f 00 D f

0
0n0.

Therefore, f 00 is a scalar multiple of n0. Since the point t D 0 was arbitrary this shows that
the trajectory  t traced out by parallel transport of r† is orthogonal to †t .

The curvature tensor R.r†/ 2 �2.M I sp.1;1// is straightforward to compute from the
connection 1-form r† � d D �1

2
†d†.

Proposition 3.3.

R.r†/ D 1
2
Tf

�
..H 2 �K/ � .H � h/2/n�f 0

dh ^ ..H � h/df C q/ ..H 2 �K/ � .H � h/2/n�f

�
T�1f

Proof. Let A WD �1
2
†d† be the connection 1-form of r†. The curvature of r† is equal to2

R.r†/ D dAC A ^ A D �1
4
d† ^ d†: (53)

2see [31, Equation 4.1.26] for a proof
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The derivative of † is equal to

d† D Tf

��
0 df

0 0

��
n 0

�h �n

�
C

�
dn 0

�dh �dn

�
�

�
n 0

�h �n

��
0 df

0 0

��
T�1f (54)

D Tf

�
.H � h/ df C q 0

�dh �.H � h/ df � q

�
T�1f (55)

and since

1
2
df ^ df D n �f

1
2
q ^ q D �.H 2

�K/n�f df ^ q D q ^ df D 0 (56)

we have

�
1
4
d† ^ d† D 1

2
Tf

�
..H 2 �K/ � .H � h/2/n�f 0

dh ^ ..H � h/df C q/ ..H 2 �K/ � .H � h/2/n�f

�
T�1f

(57)

Example 3.4. That the Gauss curvature can be realized as the curvature of a connection
obtained by rolling tangent planes around follows from Proposition 3.3 by taking h � 0:

R.rP/ D 1
2
Tf

�
�Kn�f 0

0 �Kn�f

�
T�1f D �

1
2
KN �f (58)

where N describes the congruence of normal lines of f .

Example 3.5. Another consequence of Proposition 3.3 is that the Willmore energy is equal
to the curvature of a connection obtained by rolling mean curvature spheres over the surface.

R.rS/ D 1
2
Tf

�
.H 2 �K/n�f 0

dH ^ q .H 2 �K/n�f

�
T�1f D

.H2�K/
2

NS �f (59)

The normal circle NS appears after dividing this 2-form by �f and subsequent normalization
which is only possible away from umbilic points.

3.2 Discrete Theory
The smooth interpretation of the Willmore energy provides a geometric principle from which
one can arrive at a discretization of the Willmore energy. Given an assignment of discrete
mean curvature spheres on the vertices of some cell complex define a discrete Willmore
energy per face from the monodromy obtained by rolling the discrete mean curvature spheres
over the surface. If the discrete mean curvature spheres are Möbius invariantly determined
from the discrete surface then the resulting discrete Willmore energy is also Möbius invariant.

In the following section, we show that the discrete Willmore energy from Equation 2
arises in this way from the choice of circumspheres for discrete mean curvature spheres. The
circumspheres are defined per edge as the unique sphere containing the four vertices of the
two faces adjacent to the edge, and so we introduce the Kagome complex (Section 3.2) to
describe the combinatorics of rolling adjacent circumspheres. As we roll the circumspheres
around a vertex we obtain a Möbius monodromy. Away from the vertices i 2 V where Wi D

0 the monodromy is a rotation about a normal circle to the circumsphere that we started
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Fig. 14 A well-known result is that rolling the tangent planes over a discrete surface computes the angle defect, a
discrete version of Gaussian curvature. Up to sending the point of rotation to infinity, this picture also describes the
Möbius rolling of spheres over a discrete surface. In that case, the monodromy angle computes the discrete Willmore
energy instead.

rolling from. To extract the discrete Willmore energy from this monodromy we only need to
look at the rotation angle of this transformation.

Simplicial Surfaces
So that the circumspheres are well-defined we need to assume that the vertices of the trian-
gles incident on an edge are not concircular.

Definition 3.6. For each face ijk 2 F, the circumcircle Cijk 2 C is the unique oriented circle
going through fi ; fj ; fk in counterclockwise order.

The geometric properties of the circumcircle can be summarized in the following
expression of Cijk written with respect to the vertex fi :

Cijk D Tfi

 
ti
ijk

0

�kijk ti
ijk

!
T�1fi (60)

where ti
ijk

is the tangent to the circumcircle Cijk at the point fi and kijk is the circumcircle
curvature binormal.

Definition 3.7. For each edge ij 2 E, the circumcircle intersection angle ˇij 2 Œ0; �/ is
defined to be the intersection angle between the circumcircles Cijk and Cj il .

The circumcircle intersection angle can be computed from cosˇij D hCijk ; Cj ili.

Definition 3.8. For each edge ij 2 E, the edge circumsphere Sij is defined to be the unique
sphere containing the circumcircles Cijk and Cj il . The orientation of Sij is determined so
that the outward pointing normal to Sij at the points fi is given by the direction of the
cross-product of the tangent vectors of the circumcircles ti

j il
� ti

ijk
.

We will later also need to refer to the geometric properties of the circumsphere that are
summarized in the following expression for Sij :

Sij D Tfi

�
niij 0

�hij �n
i
ij

�
T�1fi (61)

where niij is the normal to the edge circumsphere Sij at the point fi and hij is its mean
curvature. The circumspheres are a natural choice of the discrete mean curvature spheres
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since they are defined in a Möbius invariant way using the vertex positions. From the point of
view of the discrete Willmore energy, they are also the only natural choice since the energy is
defined in terms of circumcircle intersection angles and two adjacent circumcircles uniquely
determine the circumsphere.

The Kagome Complex

Fig. 15 The Kagome complex is obtained by connecting up the edge midpoints of the original simplicial surfac
(gray). The faces of the Kagome complex inside each triangle (yellow) can be used to express integrability conditions
over the triangles, and the faces of the Kagome complex associated with the vertices (blue) can be used to express
integrability conditions around vertices.

Since the circumspheres live on the edges of M, the Möbius transformations which iden-
tify incident circumspheres are most conveniently described as maps that live on the oriented
edges of the Kagome complex. The vertices of the Kagome complex are identified with the
edges of M while the edges of the Kagome complex are identified with the corners of M. A
corner of M is described by a face ijk 2 F and a vertex i incident to the face. The faces of
the Kagome complex are partitioned into two sets, one is identified with the faces of M (high-
lighted in the left side of Figure 15) while the other set is identified with the vertices of M
(highlighted in the right side of Figure 15). We write jki to denote oriented Kagome edges
from jk to j i .

The Kagome lattice is a two-dimensional geometric lattice structure that has a distinctive
pattern of interconnected triangles, reminiscent of a traditional Japanese woven basket called
a “kagome.” It is named after this basket due to its resemblance to the interwoven, hexagonal,
and equilateral faces seen in the basket’s weave [32]. The Kagome lattice is often used as a
theoretical model in condensed matter physics and material science to study phenomena such
as magnetism and electron transport [33]. We call our complex the Kagome complex in light
of the fact that it generalizes the combinatorics of the Kagome lattice to a triangulated surface.

Rolling Circumspheres
Let us define the rolling circumsphere connection as a discrete Sp.1; 1/-connection over the
trivial vector bundle over the Kagome complex of M; that is, it is an assignment of a Möbius
transformation of S3 between fibers H2ij D H2 and H2

jk
D H2 of the trivial H2-bundle over

the vertices in the Kagome complex.
Definition 3.9. The rolling circumspheres connection assigns to each oriented edge ijk in
the Kagome complex the map P.rS/ijk 2 Sp.1; 1/ defined as

P.rS/ijk WD exp
�
1
2
˛ijkCijk

�
where ˛i

jk
is the signed angle between the circumspheres Sij and Ski .
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The notation P.rS/ is used to indicate that this is a discrete version of parallel transport
induced by the connectionrS. The discrete connection can be used to parallel transport points
in S3 and Möbius transformations of S3. Consider a Möbius transformation A 2 H2�2 of
S3. It can be parallel transported from ij to jk by conjugation with P.rS/ijk . In particular,
if we look at the parallel transport of the circumspheres along Kagome edges we find that
circumspheres are parallel:

Sjk D P.rS/ijk Sij P.r
S/�1ijk : (62)

Since Sij and Sjk intersect in the circumcircle Cijk they define an elliptic sphere pencil, and

so I � SjkSij D 2 cos
˛i
jk

2
P.rS/ijk . Since the parallel transport is obtained by rotation

around the circumcircle the trajectories traced out by the interpolated parallel transport maps
t 7! exp

�
t
2
˛i
jk
Cijk

�
on each edge are orthogonal to the circumspheres (see also Section 2.2).

Monodromy of the Rolling Circumspheres Connection
The discrete analog of the curvature of the rolling mean curvature spheres connection is given
by the monodromy of the rolling circumsphere connection over the faces of the Kagome
complex. The faces of the Kagome complex identified with the faces of M have trivial
monodromy since all of the parallel transport maps involved are given by rotations around
the same circumcircle. In particular, the parallel transport maps associated with the oriented
edges of these faces commute. For the faces of the Kagome complex identified with vertices
of the original mesh, the monodromy of the rolling circumspheres connection is defined
as the product of the parallel transport in counterclockwise order across the oriented edges
bounding a Kagome face associated with a vertex of M. The computation of this monodromy
angle will follow from the following elementary lemma concerning the geometry of spherical
polygons.

Lemma 3.10. Let n0; : : : ; nm�1 2 S2 be the vertices of a spherical polygon. Assume that
consecutive vertices are not antipodal. The composition of the parallel transport maps on S2

between successive vertices is equal to the clockwise rotation around n0 by the sum of the
exterior angles of the polygon.

Proof. For ` D 0; : : : ; m � 1 let ˛` 2 Œ0; �/ and t` 2 S2 be defined by

cos˛` D hn`; n`C1i; sin˛` t` D n` � n`C1 (63)

where the indices are treated modulo m. The exterior angles ˇ` 2 Œ0; �/ are defined by

cosˇ` D ht`�1; t`i: (64)

Define the parallel transport rotations as quaternions �` WD exp.˛`
2
t`/, which satisfy

�`n`�
�1
`
D n`C1. Introducing �` WD exp.ˇ`

2
n`/, one obtains that the ordered product

m�1Y
`D0

�`�` D �m�1�m�1 � � � �0�0 D ˙1 (65)

since it is a rotation that fixes both n0 and t0. Computing

�`�`�
�1
` D �`.cos ˇ`

2
C sin ˇ`

2
n`/�

�1
` D cos ˇ`

2
C sin ˇ`

2
n`C1 D exp

�
ˇ`
2
n`C1

�
(66)
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Fig. 16 The quaternions �` and �` defined in the proof of Lemma 3.10 describe the rotations visualized in blue and
red, respectively. The axes of rotation are indicated by vectors of the same color.

and rearranging yields
�`�` D exp

�
ˇ`
2
n`C1

�
�`: (67)

By a cyclic application of this equation, we conclude that

m�1Y
`D0

�`�` D exp
�n0
2

m�1X
`D0

ˇ`

�m�1Y
`D0

�`; (68)

which implies by Equation 65 that

m�1Y
`D0

�` D ˙ exp
�
�
n0

2

m�1X
`D0

ˇ`

�
: (69)

The sign of the quaternion is irrelevant to the rotation it describes and since counterclockwise
rotation about n0 corresponds to a positive angle of rotation the monodromy is a clockwise
rotation.

For the remainder of this section, we will fix an interior vertex i 2 V and let fj˛gN˛D1 be
a labeling of the adjacent vertices in counterclockwise order, with N the degree of i . Define
the monodromy of P.rS/ around the vertex i

M.rS/i WD

NY
˛D1

P.rS/ij˛j˛C1
D P.rS/ijN j0

� � �P.rS/ij1j2
P.rS/ij0j1

: (70)

This depends on the labeling of the vertices, but the monodromy obtained from different
choices only differ by conjugation, and so the monodromy angle corresponding to the dis-
crete Willmore energy does not depend on this choice.

Theorem 3.11. If Wi ¤ 0 then the monodromy M.rS/i is a rotation about a normal circle to
Sij0 with rotation angle equal to the discrete Willmore energy. If Wi D 0 then after sending
fi to infinity by a Möbius transformation the monodromy is a translation preserving Sij0 .

Proof. By sending fi to infinity we transform all of the circumspheres into planes and the
monodromy is transformed into a product of Euclidean rotations that maps Sij0 to itself.
Therefore, in this transformed picture M.rS/i is equal to the composition of a translation
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and a Euclidean rotation about a normal line N0 to the plane Sij0 through the point fi . The
translation can be written as expV D IC V for some V 2 Vfi commuting with Sij0 . Hence,

M.rS/i D exp
�
‚
2
N0
�

expV: (71)

The rotation angle ‚ can be determined by examining the action of M.rS/i on the vector
 i WD

�
fi
1

�
. On one hand, by Equation 71

M.rS/i i D exp
�
‚
2
N0
�

expV i D exp
�
‚
2
N0
�
 i D  i exp

�
‚
2
ni0

�
; (72)

where ni0 is the normal vector to the circumsphere S0 at the point fi . On the other hand, by
Equation 70 we have that

M.rS/i i D

NY
˛D1

P.rS/ij˛j˛C1
 i D  i

NY
˛D1

exp
�˛i

j`j`C1

2
tiij`j`C1

�
(73)

By Lemma 3.10

NY
˛D1

exp
�˛i

j`j`C1

2
tiij`j`C1

�
D ˙ exp

�
�
ni
0

2

NX
`D0

ˇij`

�
: (74)

Thus, by equating these two expressions

exp
�
‚
2
ni0

�
D ˙ exp

�
�
ni
0

2

NX
`D0

ˇij`

�
: (75)

Therefore,
M.rS/i D � exp

�
�

Wi

2
N0
�

expV: (76)

This geometric interpretation of the discrete Willmore energy as the rotation angle mea-
sured when rolling the circumspheres around a vertex mirrors the geometric interpretation
of the smooth energy (see Equation 59). In the discrete case the curvature is an element of
Sp.1; 1/ while in the smooth setting it is an element of sp.1;1/. We conclude the paper by
discussing one possibility of how the rolling spheres interpretation of the discrete Willmore
energy can be used to obtain a discrete Willmore energy for more general piecewise spherical
surfaces.

Möbius Invariant Discrete Surfaces
Given the additional data of a sphere congruence S W F ! S such that Sijk is in the elliptic
sphere pencil generated by the circumcircle Cijk one can produce a Möbius invariant piece-
wise spherical surface. That it is Möbius invariant, means that if we transform the vertex
positions and sphere congruence by a Möbius transformation then the resulting piecewise
spherical surface will transform by the same Möbius transformation.

The construction we present of a piecewise spherical surface from the additional data of a
sphere per face consists of two kinds of piecewise spherical faces: (1) ideal hyperbolic faces
associated with faces of M and (2) lens faces associated with edges of M. The ideal hyperbolic
faces are obtained by considering the two regions of Sijk bounded by Cijk as Poincaré models
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Fig. 17 Visualized above is the piecewise spherical surface obtained by filling in faces with the ideal hyperbolic
triangle determined by the circumcircle and the choice of sphere congruence per face and the edges are filled in with
lenses that are uniquely determined from the piecewise spherical regions in adjacent faces.

of two-dimensional hyperbolic space. Using the orientation of both the circumcircle and the
sphere Sijk we can mark the region to the left of the circumcircle as the interior region and we
can fill in the vertices fi ; fj ; fk with an ideal hyperbolic triangle (which is determined by the
three vertices on the ideal boundary)�ijk in the interior Poincaré model of hyperbolic space.
Notice that although we call these faces ideal hyperbolic, they are only hyperbolic when
we endow the interior of the circumcircle with a hyperbolic metric. The domain can still be
realized as a subset of a 2-sphere—this is not unusual; the usual Poincaré model of hyperbolic
space is identified with a subspace in CP1 where ideal hyperbolic triangles correspond to
special circular arc triangles. For each edge ij 2 E the corresponding boundaries of�ijk and
�j il are circular arc edges that intersect in two points fi ; fj . As such, there is a unique sphere
†ij containing these two circular arc edges and we can take�ij to be the spherical lens in†ij
interpolating these two circular arc edges. We visualize piecewise spherical surfaces obtained
by different choices of sphere congruences in Figure 17. One natural choice is obtained by
taking the harmonic mean of the edge circumspheres as the spheres per face; for each face
ijk:

Sijk WD
Sij C Sjk C Ski

jSij C Sjk C Ski j
2 S: (77)

With this piecewise spherical surface one can define a geometric discretization of the Will-
more energy as the monodromy angle of rolling the face spheres Sijk onto the edge spheres
†ij and continuing all around a vertex of the original mesh—equivalently, one could consider
the area of this discrete sphere congruence. Recently, meshes with spherical faces have also
been introduced for applications in architectural geometry [34]. It is an interesting question
to study the properties of this energy and the resulting approximation of the Willmore energy
obtained by optimizing away the choice of sphere congruence.
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Appendix A Möbius Geometry of S3

Looking at the components of the equation A�A D I yields the following description of
Sp.1; 1/:

Sp.1; 1/ D

(�
a b

c d

�
2 H2�2 j Re.a Nc/ D 0; Re.b Nd/ D 0; Nbc C Nda D 1

)
(A1)

Proposition A.1. Let A 2 Sp.1; 1/. Then there exists unique x; y 2 R3 and � 2 H satisfying

A D

�
1 0

y 1

��
� 0

0 N��1

��
1 x

0 1

�
: (A2)

Proof. Let A 2 Sp.1; 1/. Then by the characterization from Equation A1 there exists
a; b; c; d 2 H satisfying

A D

�
a b

c d

�
; Re.a Nc/ D 0; Re.b Nd/ D 0; Nbc C Nda D 1: (A3)

If A fixes1 then c D 0. Thus, the equation Nbc C Nda D Nda D 1 implies that d D Na�1.
Set � D a, y D 0, and x D Ndb. Since Re.b Nd/ D Re. Ndb/ D Re.x/ D 0 we have that x 2 R3
and �x D ���1b D b. Therefore,�

1 0

y 1

��
� 0

0 N��1

��
1 x

0 1

�
D

�
� �x

0 N��1

�
D

�
a b

0 d

�
(A4)

showing the desired representation for elements of Sp.1; 1/ fixing1.
If A does not fix1 then define p1 2 R3 by A

�
1
0

�
H D

�
p1
1

�
H and set

QA D

�
1 0

�p�11 1

�
A: (A5)

Since QA
�
1
0

�
H D

�
1
0

�
H we can apply the results above to find � 2 H and x 2 R3 satisfying

QA D

�
� 0

0 N��1

��
1 x

0 1

�
: (A6)

Multiplying both sides of the equation by
�

1 0
p�11 1

�
gives the desired representation with y D

p�11

A D

�
1 0

p�11 1

��
� 0

0 N��1

��
1 x

0 1

�
: (A7)

A.1 Light Cone and Infinitesimal Translations
There are two additional spaces that we also need to define inside of H2�2: a realization of
S3 itself inside of H2�2 and a space of infinitesimal translations. These spaces naturally arise
in the classification of pencils of spheres in Section 2.2. To realize S3 inside of H2�2 one can
take a renormalized limit of the Möbius transformations obtained by inversion in spheres of
vanishing radius centered around the points—in this way we can think of each point in S3 as
a sphere of zero radius.

30



Light cone model of S3

The light cone model of Möbius S3 can be realized inside of H2�2 by considering the five-
dimensional vector space

R4;1 WD
˚
Y 2 H2�2 j Y� D Y; trR Y D 0

	
(A8)

D

n�
a ˇ


 �a

�
j a 2 R3; ˇ; 
 2 R

o
; (A9)

endowed with the symmetric bilinear form

hY;Yi D �1
2

trR
�
Y2
�
D kak2 � ˇ
; Y D

�
a ˇ


 �a

�
(A10)

of signature (4,1). It is classical that the conformal compactification S3 D R3 [ f1g can be
realized as the projectivized light cone in R4;1. Let

L D fY 2 R4;1 j hY;Yi D 0g (A11)

then
S3 Š L=R� (A12)

where the action of R� WD R n f0g on R4;1 is given by scaling.
Remark A.2. A direct computation shows that for A;B 2 R4;1, 1

2
fA;Bg D �hA;BiI. There-

fore, since the space of oriented 2-spheres S is also a subset of R4;1 it is the Lorentzian unit
sphere S D fS 2 R4;1 j hS; Si D 1g inside R4;1.

An explicit isomorphism between these two models of Möbius S3 is given by the
Euclidean lift into the light cone

‰p WD Tp

�
0 0

1 0

�
T�1p D

�
p kpk2

1 �p

�
: (A13)

It is straightforward to verify that h‰p; ‰pi D 0. The point infinity is described by the point

14;1 WD

�
0 1

0 0

�
(A14)

The map
�
p
1

�
H 7! Œ‰p�, extended so that the image of1 is14;1, defines a conformal iso-

morphism between our quaternionic projective model of S3 and the classical light cone model
of S3. Equation A13 is called the Euclidean lift since the identification p 2 R3 7! ‰p 2 R4;1
is an isometry. All other lifts into the positive light cone are obtained by multiplying ‰p by a
positive scalar.

Infinitesimal translations
To describe geodesic motion inside a parabolic sphere pencil (see Section 2.2) one needs
to work with a bundle of infinitesimal Möbius transformations that describe infinitesimal
translations when the basepoint is sent to infinity. For each isotropic line p 2 S3 define

Vp WD
˚
W 2 sp.1;1/ j kerW � p; imW � p

	
: (A15)

Vp and VAp are related by conjugation by A for any A 2 MRob.3/. With a little abuse of
notation, for a point p 2 R3 we will write Vp to denote V�p

1

�
H. It is straightforward to verify
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that

Vp D
n
Tp

�
0 0

w 0

�
T�1p j w 2 R3

o
: (A16)

All matrices on the right-hand side satisfy the kernel and image condition defining Vp , and
since both the left and right-hand sides of Equation A16 are vector spaces of the same
dimension they are equal. Since

V1 D
n�
0 w

0 0

�
j w 2 R3

o
(A17)

consists of nilpotent matrices

exp
�
0 w

0 0

�
D IC

�
0 w

0 0

�
D Tw (A18)

and therefore elements of Vp can be identified with infinitesimal translations of R3 after
p 2 R3 is sent to infinity by a Möbius transformation.

A.2 Quaternionic Realizations of the Space of p-spheres
In this appendix, we will prove that the equations determined in Section 2 that define the
spaces S, C, and P precisely correspond to the inversions in oriented spheres, circles, and
point pairs, respectively. The following result will be used to show that the matrices can be
assumed to take a simple form where the elementary geometric properties of the spheres can
be read off directly from the matrix entries.
Theorem A.3. If A 2 MRob.3/ fixes all points of S3 then A D ˙I.

Proof. We first show that the claim holds if A 2 Sp.1; 1/ then we show that there does
not exist any orientation reversing Möbius transformation satisfying the assumption in the
theorem.

Let A 2 Sp.1; 1/ be a matrix that fixes all points in S3. In particular, it fixes both zero and
infinity and so A is a diagonal matrix of the form

A D

�
a 0

0 Na�1

�
(A19)

for some a 2 H. For all y 2 R3 we have that

A

�
y

1

�
D

�
ay

Na�1

�
D

�
y

1

�
�y (A20)

for some �y 2 H. The second row of this equation implies that �y D Na�1 and so the first
row of this equation implies that ay D y Na�1 for all y 2 R3. Taking the norm of this equation
implies that jaj D 1 and so Na�1 D a. Therefore, ay D ya for all y 2 R3 and so a 2 R. The
condition that jaj D 1 implies that a D ˙1 and so A D ˙I.

If A 2 MRob.3/ describes an orientation reversing Möbius transformation of S3 then
A�A D �I. If it fixes all points of S3 then it fixes zero and infinity and so

A D

�
a 0

0 �Na�1

�
(A21)

for some a 2 H. As above, the assumption that it fixes all points in S3 now implies that
ay D �y Na�1 and taking the norm of this equation implies that jaj D 1 and Na�1 D a. Thus,
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ay D �ya for all y 2 R3 and this only holds for a D 0, which obviously cannot hold and
so we conclude that no orientation reversing Möbius transformation of S3 exists that fixes all
points of S3.

Proposition A.4. Let S 2 S. Then S describes the inversion in a two-sphere in S3.

Proof. Since S�S D �I, by Theorem A.3, then S does not fix all points of S3. Hence two
distinct points are interchanged by S. Without loss of generality we can assume that zero and
infinity are interchanged, and so

S D

�
0 a

b 0

�
(A22)

with a; b 2 R and ab D ba D �1. So a D � and b D �1=� with � 2 R. This is the inversion
in a sphere centered at zero with radius �:

S

�
x

1

�
H D

 
�2

jxj2
x

1

!
H (A23)

Proposition A.5. Let C 2 C. Then C describes the inversion in a circle in S3.

Proof. C cannot fix all points of S3 since by Theorem A.3 this would imply that C D ˙I and
˙I … sp.1;1/. So two distinct points are interchanged by C. Without loss of generality we
can assume that zero and infinity are interchanged. Then

C D

�
0 a

b 0

�
(A24)

with a; b 2 R3 and ab D ba D �1. So b D n=� and a D �n with � 2 R and n2 D �1. This
is the inversion in a circle centered at the origin with curvature binormal �n:

C

�
x

1

�
H D

 
�
�2

jxj2
Nnxn

1

!
H (A25)

Proposition A.6. Let U 2 P . Then U describes the inversion in a point pair in S3.

Proof. U cannot fix all points of S3 since by Theorem A.3 this would imply that U D ˙I and
˙I … sp.1;1/. So two distinct points that are interchanged by U. Without loss of generality
we can assume that zero and infinity are interchanged. Then

U D

�
0 a

b 0

�
(A26)

with a; b 2 R3 and ab D ba D 1. So b D a�1. This is the inversion in the pair of points a
and �a:

U

�
a

1

�
H D

�
a

1

�
H; U

�
�a

1

�
H D �

�
�a

1

�
H (A27)
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