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Abstract

Surface parameterizations with low metric distortion are essential for a wide variety of applications
ranging from geometry processing, to digital manufacturing, to machine learning. Conformal param-
eterizations are easy to compute and exactly preserve angles, but can significantly distort areas. Cone
singularities have been introduced as a way of mitigating area distoriton, but finding the configuration
of cones that best reduces distortion is notoriously difficult. This thesis develops a simple strategy that
provides globally optimal configurations of singularities, in the sense that the configuration minimizes
the total area distortion among all possible conformal cone configurations (number, placement, angle)
that have no more than a fixed total cone angle. In practice, our optimal cone configurations can yield
dramatically lower area distortion than those found via existing heuristics. Moreover, the approach
can be extended to allow user-defined notions of importance, find the best flattening with a convex or
polygonal boundary, and produce solutions with only positive cone angles.

Our approach can be summarized as follows: the cone singularity placement problem is relaxed to a
convex optimization problem over the space of finite signed Radon measures with a sparsity inducing
regularization. By utilizing Fenchel-Rockafellar duality we obtain an equivalent formulation over some
usual function spaces, which are easily and properly discretized using finite elements. Computing the
optimal configuration of cones amounts to solving a sequence of sparse linear systems easily built from
the usual cotangent Laplacian. The experimental results presented in this thesis provide some evidence
that simple sparsity inducing norms may be widely applicable to problems arising in computer graphics
and geometry processing.

Left: Conformal flattening yields maps with no angle distortion, but can exhibit severe area distortion. Right: An optimal arrange-
ment of a small number of cone singularities (here, just nine) can push a conformal flattening very close to perfect isometry.
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Chapter 1

Introduction

Figure 1.1: A conformal cone parameterization is equivalent to flattening a smooth surface, like the sphere, over a polyhedral
surface, which can be cut and unfolded into the plane without further distortion. By adding more and more cone points, one can
make area distortion arbitrarily small. (Texture courtesy NASA Earth Observatory.)

Mesh parameterization is a fundamental component of a wide variety of problems in applied geometry—
beyond traditional tasks in computer graphics (such as texture mapping), surface flattenings have
become an important component in a diverse collection of areas ranging from digital manufacturing
to machine learning [41, 44]. Ideally, one would like a parameterization that is isometric, i.e., no dis-
tortion of lengths or areas, but for general curved surfaces no such map exists. Conformal flattenings
are attractive because they completely eliminate angle distortion, and are easily computed via linear
or convex problems. However, they can also yield significant distortion of areas, which is problem-
atic for applications since a large region of the surface is represented by only a very tiny region in the
parameter domain.

The basic idea behind cone flattening [39] is that, intrinsically, many surfaces look more like a poly-
hedron than the flat plane—consider for instance maps of the Earth generated by conformally mapping
the globe onto a regular polyhedron (Fig. 1.1). Since this initial map induces very little area distortion,
and since the polyhedron can then be cut and unfolded into the plane without further stretching, the
composite map also has low area distortion. Of course, different polyhedral metrics will lead to differ-
ent amounts of distortion—the problem of cone parameterization therefore boils down to deciding on
a configuration of vertices, which is described by the number, placement, and angle of the associated
cone singularities. As stated, however, this problem is ill-posed: one can always reduce distortion fur-
ther by considering a finer polyhedron, i.e., allowing more cones. To make this problem well-posed,
one can ask for the best configuration with a fixed number of cones, or alternatively (as we will do), fix
the total magnitude Φ :=

∑

i |φi | of all cone angles φi .
Though a number of a strategies have been developed for picking cones, none come with a clear

guarantee of optimality, and in practice each can be confounded by certain types of models. The strat-
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egy we develop ensures that total area distortion is always globally minimized, thereby providing
substantial robustness and, in practice, significantly lower distortion on many real-world examples.
The key insight is that this seemingly hard combinatorial problem can be relaxed to an easier convex
problem, whose minimizers can still be used to obtain optimal solutions. In particular, we formulate
a convex optimization problem over the space of finite signed Radon measures, and we add a sparsity
inducing regularization to produce measures that represent cone singularities. By using convex duality,
we obtain an equivalent optimization problem framed over the space of continuous functions and a set
of first order optimality conditions. The resulting optimality system can be efficiently solved numeri-
cally using semismooth Newton methods (Chapter 5). In the end, we obtain a practical and efficient
algorithm that:

• finds conformal flattenings of minimal total area distortion among all possible configurations of

cones and choices of boundary conditions,

• can be trivially accelerated with a simple multi-resolution scheme,

• provides user control over both regions where cones can be placed, as well as regions where

distortion should be measured,

• provides the ability to find optimal flattenings with a convex or polygonal boundary, and

• allows cone angles to be limited to a given range (e.g., positive only or [−π/2,π/2]).

Beyond simply developing an algorithm, we also start to develop an understanding of some fun-
damental questions which can help to inform algorithmic decisions both in the present thesis and in
the development of future work. In particular, we look at the practical importance of choosing a prin-
cipled measure of area distortion (Sec. 3.3), we analyze stability of cone flattenings with respect to
perturbations of the cones, i.e., how much will distortion change if singularities are “merged” or “split”
(Sec. 4.4); and we consider the approximability of smooth metrics by polyhedral cone metrics from
an analytical point of view, i.e., when can a given metric be arbitrarily well-approximated by cones
(Sec. 4.4). We also carefully analyze the solutions to our optimization problem—a subtle point is that,
in the continuous setting, minimizers of the relaxed problem live in the measure space H−1 and hence
cannot exactly describe cones, which correspond to Dirac delta measures. In practice we can therefore
(very rarely) get tiny clusters of cones; the stability result mentioned above ensures that these clusters
can be rounded to a nearby cone configuration with a virtually imperceptible change in area distortion
(Fig. 4.1).

Related Work

A variety of problems in digital geometry processing seek to determine ideal locations for certain singu-
lar features. For instance, in the design of tangent vector fields, tensor fields or rotationally symmetric
direction fields, judicious placement of singularities can have a significant effect on the global regular-
ity of the field [65]. These types of singularities are tangentially related to the ones we consider here,
in the sense that such fields are often used to drive surface flattening [11], though the link is fairly
indirect: singularities that yield highly smooth fields do not immediately guarantee a good flatten-
ing (especially when far from integrable). In this setting one can find singularities that yield optimal
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smoothness by simply solving a sparse eigenvalue problem [40]. There is also an extensive literature
on cutting surfaces into pieces that can be flattened with low area distortion [51]; an important distinc-
tion between general cuts and those arising from a cone flattening is that the latter is automatically
seamless away from a small isolated set of cone points—consider for instance “painting” on the intrinsic
polyhedral domain (Fig. 1.1, top) rather than the final 2D layout (Fig. 1.1, bottom). To date there is
also no method for surface cutting that guarantees global optimality in the sense of area distortion
(e.g., subject to a bound on the length of the cut); in fact even the simpler problem of finding the short-
est way of cutting a surface into a disk is NP-hard [24].

Conformal Cone Singularity Placement In this thesis, we focus specifically on placing cone singulari-
ties to reduce area distortion in conformal flattening; here a variety of strategies have been proposed.
Kharevych et al. [39] initially investigated cone flattenings by manually drawing layouts and adjusting
cone angles to reduce distortion. Springborn et al. [54] propose a method for cone flattening (CETM)
where cones are chosen via a simple greedy algorithm: iteratively flatten the mesh; at each iteration
place a new cone singularity at the point of greatest area distortion. In subsequent iterations, cone
points are effectively treated as punctures in the domain, leading to cone angles that are automati-
cally determined by the flattening process. As we will discuss in Sec. 3.3, however, this approach is
mesh dependent since the Dirichlet energy of the log conformal factor blows up in the presence of cone
singularities. In a parallel development, Ben-Chen et al. [8] devise an algorithm for cone flattening
(CPMS) where cone locations are chosen via the same greedy strategy, but angles are instead deter-
mined via a diffusion process involving Gaussian curvature; this basic strategy was recently accelerated
by Vintescu et al. [68] using hierarchical persistence. Later, Myles & Zorin [45] develop a method for
seamless global parameterization (GPIF), where the first stage is to determine the cone configuration
by incrementally flattening the surface starting with the flattest regions, i.e., those with smallest Gaus-
sian curvature. A key insight of our work is that curvature does not always provide useful information
about how cones should be arranged, since such reasoning does not account for the cones’ non-local in-
fluence on area distortion. In fact, one can find many examples where the optimal configuration places
cones in regions that are flat—see for instance Fig. 5.2 where an optimal cone configuration includes
cones in intrinsically flat regions; another example of how curvature-based approaches may lead to
suboptimal solutions is shown in Fig. 1.2. We instead adopt a different point of view, namely that the
problem of finding optimal cones can be better understood as an approximation problem—for instance,
if the surface were first flattened without cone singularities, one should seek the best approximation
of the resulting log conformal factor u by a finite sum of harmonic Green’s functions, which do not
have compact support. A rather surprising result is that for this problem a sparsity-inducing norm will
concentrate the solution onto isolated points (i.e., cones) rather than curves or other regions.

Cone Metrics, Orbifolds, and Liouville Equations More broadly, Riemannian metrics with conical sin-
gularities can be understood from a variety of different points of view. Thurston studied a geometric
picture of Riemannian metrics with an orbifold structure, i.e., each point must locally look Euclidean
or like the quotient of a Euclidean space under the action of a discrete group [56, Chapter 13]; he
also showed that every cone metric can be triangulated, providing a clear connection between cone
manifolds and the triangle meshes used in computer graphics [57]. Very recently this orbifold perspec-
tive has become quite fruitful in digital geometry processing, leading to a variety of algorithms for
computing canonical mappings between surfaces with landmarks [61], and surface parameterization
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Figure 1.2: Even with fewer cones and much smaller total cone angle, our cone placement strategy (MAD) yields far lower area
distortion than previous methods. This effect is especially apparent on shapes like the brain, which do not have obvious peaks of
curvature.

algorithms with guarantees on global injectivity [2, 3, 4]. A very different perspective on cone met-
rics centers around the more analytical point of view of Liouville equations, in particular the Yamabe
equation ∆u= K0 − e2uK describing the change in Gaussian curvature K under a pointwise conformal
scaling g = e2u g0 of a metric g0. Troyanov provided some of the early foundations for studying this
equation in the context of singular cone metrics [59, 60], which continues to be studied [20, 22, 23].
This intrinsic, analytic point of view has been used as a starting point for many recent algorithms in
computational conformal geometry including the ones mentioned above (CPMS, CETM, and GPIF), as
well as a recent method for conformal flattening [49]; it also plays a fundamental role in the method
we develop here.

Convex Optimization and Semismooth Operator Equations Carefully formulating the cone placement
problem as a PDE constrained optimization problem allows us to take advantage of highly effective
optimization methods that have been recently developed by the optimal control community for semis-
mooth operator equations. A key insight of these methods is that one should not directly discretize the
original problem, but first formulate optimality conditions involving both primal and dual variables
in the continuous setting, then discretize these optimality conditions [28, 36, 52]. The reason is that
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directly discretizing the original problem may destroy important structures and relationships that ap-
pear in the context of continuous function (or measure) spaces, but are lost when moving to finite
dimensional discrete spaces. A primal/dual formulation of our problem yields optimality conditions de-
scribed by a semismooth operator equation, which can be solved effectively using semismooth Newton
methods [16, 62, 64]. In particular, we mainly follow the approach of Hinze [34], where one does not
need to directly optimize the control variables (in our case, the curvature measure used as a proxy for
cone singularities) but instead introduces a collection of adjoint variables, which in our case amount
to the Laplace inverse of the log conformal scale factors. These variables are highly unusual and do
not appear in previous work on conformal flattening. For problems involving highly irregular solutions
(like our cone distribution) it is also important to properly regularize this problem—here we apply
Moreau-Yosida regularization to counteract numerical instability and improve the rate of convergence
[9, 32, 35, 37, 58]. Finally, since we solve a relaxed problem we need a way to encourage sparsity;
recent work by Clason and others provides a rigorous foundation for applying sparsity-inducing mea-
sure norms to PDE constrained optimization problems, mirroring how `1 norms are used to encourage
sparsity for purely discrete problems [13, 18, 19]. Our work builds on all of this literature and shows
how a similar formulation can be applied to problems in geometry processing and computer graphics.
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Chapter 2

Background

In this chapter we review the main notions from functional analysis, measure theory, convex analysis,
and differential geometry that will be used throughout our work.

2.1 Linear and Convex Duality

2.1.1 Functional Analysis

The dual of a normed vector space (V,‖ · ‖V ) is the space of linear continuous functionals V → R, and is
denoted by V ?. We endow V ? with the dual norm

‖L‖V? := sup {L(v) : v ∈ V, ‖v‖V ≤ 1} ,

which makes V ? into a Banach space. The notation 〈L, v〉V?×V := L(v), denotes the duality pairing
between V ? and V . Often, we will just write 〈·, ·〉 = 〈·, ·〉V?×V if the vector spaces in question are clear
from context. This notation is nice since many of the intuitions we have about inner products in Hilbert
spaces carry over to arbitrary normed vector spaces once we replace the inner product with a duality
pairing. Recall that a linear operator T : V →W is continuous if and only if ‖T‖L (V,W ) < +∞.

Let Λ : V → W be a continuous linear operator between normed vector spaces. The adjoint is the
map Λ∗ : W?→ V ? characterized by

〈L,Λv〉W?×W = 〈Λ∗L, v〉V?×V

for all L ∈W?, v ∈ V .
We can use the duality pairing between V ? and V to endow V ? with the weak-? topology, denoted

by σ(V ?, V ). This is the topology generated by finite intersections of sets of the form
§

L ∈ V ? : |L(v)|<
1
n

ª

,

where v ∈ V and n ∈ N. It is a classical result that σ(V ?, V ) is makes V ? into a locally convex topo-
logical vector space. We write Ln

?
* L to indicate that Ln converges to L in the weak-? topology. An

equivalent characterization of weak-? convergence of functionals is

Ln
?
* L ⇐⇒ Ln(v)→ L(v) for all v ∈ V

as n→ +∞. A central appeal of the weak-? topology is that the unit ball is compact:

Theorem 1 (Banach-Alaoglu). Let V be a normed vector space. Then the unit ball

BV?(0, 1) = {L ∈ V ? : ‖L‖V? ≤ 1}

is compact in the weak-? topology.
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Finally, the convex conjugate of any function F : X → R is the function F∗ : X ∗→ R given by

F∗(L) := sup
x∈X
{L(x)− F(x)}

A concrete example is that the convex conjugate of any squared norm is the corresponding (squared)
dual norm—for example, the dual L1 is L∞; the dual of L2 is just L2 (making appropriate identifica-
tions). An example important in our setting is that the measure norm ‖ · ‖M can be obtained as the
convex conjugate of an indicator function on the unit ball of continuous functions.

2.1.2 Convex Analysis

A powerful tool in optimization is formulation of a dual problem, which may be easier to work with
than the original primal problem. A very general purpose approach is Lagrange duality, though for
problems involving measure spaces this approach becomes quite technical (see Sec. 4.3). We instead
use the more specialized technique of Fenchel-Rockafellar duality, which for problems of the kind con-
sidered in this thesis easily yields an explicit characterization of minimizers.

In particular, suppose we want to solve the problem

inf
x∈X

F(x) + G(Λx),

where (subject to mild technical conditions) F : X → R and G : Y → R are convex functions on normed
vector spaces X and Y (resp.), and Λ : X → Y is a linear map. The Fenchel-Rockafellar duality theorem
states that this problem is equivalent to the dual problem

max
y∗∈Y ∗

−F∗(Λ∗ y∗)− G∗(−y∗),

i.e., both problems have the same optimal value, and moreover, optimal points x and y∗ can related by
an explicit set of optimality conditions, as described below.

Theorem 2 (Fenchel-Rockafellar duality). Let V and W be Banach spaces, and let F : V → R and
G : W → R be lower-semicontinuous, convex, and proper functions. Let Λ : V →W be a linear continuous
operator. If there exists a point v0 ∈ V such that F (v0) < +∞ and G (Λv0) < +∞, and G is continuous
at Λv0, then

inf
v∈V
{F (v) +G (Λv)}= max

w?∈W?

�

−F ?(Λ?w?)−G ?(−w?)
	

. (2.1)

The equality in Eqn. 2.1 is attained by some pair (v, w?) if and only if the following extremality condi-
tions hold:

(

Λ?w? ∈ ∂F (v)

−w? ∈ ∂G (Λv)

Optimality Conditions As with Lagrange duality, optimal points can be nicely characterized in terms
of both primal and dual variables. For a differentiable objective, these conditions would simply involve
derivatives of F and G. One challenge, however, is that these functions are not required to be differen-
tiable (as will be the case in our problem, due to use of the measure norm—see Sec. 3.4). We therefore
formulate optimality conditions in terms of the subdifferential. Intuitively, if the gradient provides the
best linear approximation at a point, then the subdifferential describes all linear approximations “be-
low” the function (see inset figure). More precisely, for any convex function f from a normed vector
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space X to R, the subdifferential is defined as

∂ f (x) := {L ∈ X ∗ : L(y)− L(x)≤ f (y)− f (x) for all y ∈ X } .

A simple example is the function f : R→ R given by x 7→ |x |+ x2: for x 6= 0 the subdifferential contains
just the ordinary derivative f ′(x); at x = 0, the subdifferential is ∂ f (0) = [−1,1] (see inset figure).
Using the subdifferential, we can express the optimality conditions as

(

Λ∗ y∗ ∈ ∂ F(x),

−y∗ ∈ ∂ G(Λx).

For example, when Λ is the identity, and both F and G are differentiable, these conditions amount to
saying that ∇F(x) = −∇G(x), i.e., the usual statement about Lagrange multipliers.

From the perspective of computation, a somewhat surprising outcome is that for problems involving
measures, discretizing and solving these optimality conditions appears to yield numerical behavior
far superior to simply trying to solve the primal or dual problem directly (Sec. 3.4). In other words,
deriving the optimality conditions in the continuous setting and then discretizing is not equivalent to
discretizing the optimization problem and then computing optimal solutions—the former approach
seems to preserve essential structure from the continuous setting (namely, relationships between pri-
mal and dual variables).

2.2 Measure Theory

A key feature of our approach is that the underlying optimization problem is framed over the space of
measures, instead of usual function spaces. Consider a compact topological space, Y . A measure on Y
is a countably additive set function µ :B(Y )→ R defined on the Borel σ-algebra satisfying µ(;) = 0.
A Radon measure on a σ-finite topological space is a Borel measure that is finite on compact sets. We
letM (Y ) denote the space of all bounded Radon measures on Y . For µ ∈M (Y ) we consider the total
variation measure |µ| :B(Y )→ R+ given by

|µ|(E) := sup

¨

N
∑

n=1

|µ(En)| : En ∈B(Y ),
N
⋃

n=1

En ⊆ E

«

.

We also consider the space of positive measures, denoted byM+(Y ). Note that |µ| ∈ M+(Y ). We can
makeM (Y ) into a normed vector space by considering the total variation norm:

‖µ‖M (Y ) := |µ|(Y ).

In fact,M (Y ) is a Banach space under this norm (this will follow from the characterization ofM (Y )
using duality).

This definition can be unweildly for purposes of optimization, and so we employ linear duality
to obtain a nicer characterization ofM (Y ). Consider the vector space of all continuous functions,
denoted by C (Y ). We make C (Y ) into a Banach space by endowing it with the norm ‖ϕ‖C (Y ) :=
supx∈Y |ϕ(x)|. The Riesz representation theorem for C (Y ) states that for every linear and continuous
functional L :C (Y )→ R there exists a unique Radon measure µ ∈M (Y ) such that

L(ϕ) =

∫

Y

ϕ dµ

for all ϕ ∈ C (Y ) [25, Theorem 7.2]. Similarly, every µ ∈M (Y ) defines a linear functional on C (Y ) by
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Lebesgue integration, as above. In light of this, we can make the identification C (Y )? =M (Y ), and
makeM (Y ) into a Banach space with the norm

‖µ‖M (Y ) = sup

�∫

Y

ϕ dµ : ϕ ∈ C (Y ), ‖ϕ‖C (Y ) ≤ 1

�

.

The Jordan decomposition theorem allows us to uniquely write any µ ∈M (M) as:

µ= µ+ −µ−,

where µ± ∈M+(Y ) are positive measures. We can use the Jordan decomposition to express the total
variation norm:

‖µ‖M (Y ) = |µ|(Y ) = µ+(Y ) +µ−(Y ).

Furthermore, note that |µ| is absolutely continuous with respect to µ, and so by the Radon-Nikodym
theorem we have that

dµ
d|µ|

∈ L1(Y, d|µ|),

Furthermore, we have that |dµ/d|µ||= 1 for |µ|-almost every x ∈ Y .
The main motivation for considering the spaceM (Y ) is that the above measure norm is the natu-

ral generalization of the L1-norm on functions, which is known to promote sparsity. To see this, fix a
measure ν on Y , and consider any integrable function f ∈ L1(Y,ν). If we consider the measure

µ f (E) :=

∫

E

f dν,

then we have ‖µ f ‖M (Y ) = ‖ f ‖L1(Y,ν). However, not every measure can be represented as a function in
the above way. The prototypical example of this, and the most important example for our work, is the
Dirac delta measure. For any fixed x ∈ Y we define the Dirac delta measure supported at x to be

δx(E) :=

(

1 if x ∈ E,

0 if x /∈ E.

This corresponds to the linear functional L(ϕ) := ϕ(x).
SinceM (Y )∼=C (Y )? we know that the unit ball inM (Y ) is weak-? compact (that is, compact with

respect to σ(M (Y ),C (Y ))). Compare this with the (weak) precompactness characterization of sets in
L1(Y ; dν):

Theorem 3 (Dunford-Pettis). Let F ⊂ L1(Y ). The F is weakly sequentially precompact if and only if

(i) F is bounded in L1(Y ),
(ii) F is equi-integrable and for every ε > 0 there exists E ⊂ Y with E ∈ B(Y ) such that µ(E) < +∞

and

sup
f ∈F

∫

Y \E
| f | dν≤ ε.

This equivalence between weak sequential precompactness in L1(Y ) and equi-integrability (defined
below) shows that the unit ball in L1(Y ) is not weakly compact. This often makes L1 an undesirable
space to work in for the calculus of variations.
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Definition 4. F ⊆ L1(Y, dν) is equi-integrable if for every ε > 0 there exists δ > 0 such that
∫

E

| f | dν≤ ε

for all f ∈ E and all measurable E ⊂ Y with ν(E)≤ δ.

2.3 Riemannian Geometry

In this section we very quickly recall the main objects of study in differential and Riemannian geom-
etry, building up the necessary machinery to define the Laplace-Beltrami operator. A more complete
exposition can be found in any standard textbook on Riemannian geometry [38].

Definition 5. A Riemannian metric on M is a section of the tensor bundle T 2
0 M = T M∗ ⊗ T M∗

g : M → T M? ⊗ T M?,

p 7→ gp ∈ (Tp M)? ⊗ (Tp M)? ∼= (Tp M × Tp M)?,

such that the bilinear map gp : Tp M × Tp M → R is symmetric and positive definite.

Now we can define a Riemannian manifold as a pair (M , g) where M is a smooth manifold and g is a
Riemannian metric on g. The Riemannian manifold will be the central object of study in our work.

Definition 6. The Riemannian volume form is the unique volume form dAg ∈ Ωn(M) satisfying

dAg(e1, . . . , en) = 1,

whenever (e1, . . . , en) is a positive orthonormal basis of Tp M .

By an abuse of notation, we write for f ∈ C∞(M)
∫

M

f :=

∫

M

f dAg .

Often we will write dA= dAg when the metric is understood from context. The existence of a Rieman-
nian volume form is equivalent to the orientability of the manifold.

Definition 7. The Laplace-Beltrami operator on (M , g) is the differential operator

∆g := ?d ? d = δd

Proposition 8. In local coordinates, the Laplace-Beltrami operator is written as

∆g = −
1

p

det(g)

∂

∂ x j

�

Æ

det(g)g i j ∂ f
∂ x i

�

.

Note that in local coordinates ∆g is an elliptic differential operator in divergence form. Note that
we could have alternatively just skipped all of the machinery above, but it is very instructive to use the
machinery of the exterior algebra to define this since it provides a very natural approach to discretiza-
tion. In particular, one simply needs to define discrete Hodge star and exterior derivative operators
to define the Laplace-Beltrami operator. This is in fact the approach we take (which just happens to
coincide with the finite element discretization with piecewise linear finite elements).

Now we briefly define an affine connection (also known as a covariant derivative) to be able to
invariantly define the Sobolev spaces on manifolds.
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Definition 9. A connection on a vector bundle E→ M is an R-linear map

∇ : Ω0(M ; E)→ Ω1(M ; E)

such that if f : M → R and σ ∈ Ω0(M ; E) we have the Leibniz product rule

∇( f σ) = d f ⊗σ+ f∇σ.

2.4 Sobolev Spaces on Manifolds

In this section we define the Sobolev spaces on Riemannian manifolds, recall the basic embedding
and trace theorems, and prove a classical elliptic regularity theorem related to the Laplace-Beltrami
operator.

Consider an oriented Riemannian manifold (M , g). Recall that the Riemannian metric defines the
Levi-Civita connection ∇g and a Riemannian volume form dAg = ?1. Using the Riesz-Representation
theorem for the space of measures, we deduce that dAg defines a Radon measure on M .

Definition 10. The space Lp(M , dAg) is the space of (equivalence classes of) p-integrable functions on
the measurable space (M ,B(M), dAg). When the metric or volume form is understood from context
we write Lp(M) for Lp(M , dAg).

Similarly, we can define the Lp-spaces for sections of a vector bundle π : E→ M with a metric h. For
simplicity, we assume that the fibers of E are separable so that notions of strong/Bochner measurability
coincide with Borel measurability—this seems like a delicate point, but this shouldn’t show up in our
work since we will only consider the finite-dimensional cases of E = T M⊗k.

Definition 11. The space Lp(M ; E) is the space of equivalence classes of Borel measurable maps σ :
M → E such that (π ◦σ)(x) = x for dAg -almost every x ∈ M and such that the map x 7→ ‖σ(x )‖h is in
Lp(M , dAg).

Now we can define the Sobolev spaces on manifolds in an invariant way quite easily!

Definition 12. The Sobolev space W 1,p(M) is defined as the set of functions u ∈ Lp(M ; dAg) such that
there exists v ∈ Lp(M ; T ∗M) satisfying

∫

M

〈v,ϕ〉 dAg =

∫

M

〈u,∇?ϕ〉 dAg

for all ϕ ∈ C∞c (T
?M). Here ∇ : Ω0(M) → Ω1(M) is the Levi-Civita connection and ∇? is the L2-

adjoint of the connection.

Note that we can use this same definition to define higher order Sobolev spaces by replacing the
connection by the iterated connection ∇k : Ω0(M)→ Ωk(M). Although this definition is quite nice to
write down, it is often more convenient (or necessary) to work in local coordinates.

Proposition 13. Let (M , g) be a compact oriented Riemannian manifold with metric tensor g of class C∞.
Then u ∈W 1,p(M) if and only if (u ◦ψ)|U ∈W 1,p(Ω) for all local charts ψ : U ⊂ M → Ω ⊂ Rn.

We now recall the classic Sobolev embedding theorems. In light of the above proposition they can
be proved by localizing and using the corresponding results for the usual Sobolev spaces in Rn.

11



Theorem 14 (Morrey embedding). For p > n we have the continuous embedding

W 1,p(M) ,→C (M ;R).

This embedding will be used to relate the solutions to partial differential equations involving measures
to Sobolev spaces. The following trace theorem is easily proved by using a local coordinate system,
flattening out ∂M , noting that the regularity of the boundary ensures that we are working in a Sobolev
extension domain, and then using the usual Sobolev trace theorem.

Theorem 15 (Traces in H1). The restriction operator Tr :C (M ;R)→C (∂M ;R) extends to a continuous
operator Tr : H1(M)→ H1/2(∂M) such that integration by parts holds with the weak partial derivatives.

Finally, we recall an elliptic regularity theorem on compact Riemannian manifolds. One can easily
prove the following using the ideas from Gilbarg & Trudinger [27] and working in local coordinates.
This follows since the Laplace-Beltrami operator is an elliptic differential operator (in divergence form)
in any local coordinates.

Theorem 16 (Elliptic Regularity). Let u ∈W 1,p
0 (M) be such that ∆gu ∈W k,p(M) for some k ∈ N0. Then

u ∈W k+2,p(M)∩W 1,p
0 (M) and we have the bounds

‖u‖W k+2,p(M) ≤ C
�

‖u‖Lp(M) + ‖∆gu‖W k,p(M)

�

,

for some constant C = C(k, p)> 0.
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Chapter 3

Problem Setup

3.1 Cone Singularities and the Yamabe Equation

A Riemannian metric eg is conformally equivalent to g if it can be expressed via a pointwise rescaling
eg = e2u g for some function u : M → R called the log conformal factor; any such transformation
preserves angles between tangent vectors, but not necessarily their length. A conformal flattening
is any conformal rescaling such that the new metric eg has zero Gaussian curvature. The change in
curvature under a conformal rescaling is described by the Yamabe equation:

∆u= K − e2u
eK .

Along the boundary ∂M , the change in geodesic curvature κ is described by the Cherrier boundary
conditions:

∂ u
∂ n
= κ− eu

eκ.

A derivation of these equations can be found in Aubin [6].
A conformal cone metric with cone singularities {pi}mi=1 of orders {αi}mi=1 is a Riemannian metric g

such that in local complex coordinates g = e2u|dz|2 the function

u(z)−αi log |z − z(pi)|

is continuous near each point pi [59, Definition 1]. A cone metric is polyhedral if its Gaussian curva-
ture is zero away from cone points (the chief example of course being the metric of any Euclidean
polyhedron, as depicted in Fig. 1.1).

Now how does the Yamabe equation change in the presence of cone singularities? To understand
this we will use the following generalized Gauss-Bonnet theorem.

Proposition 17 ([60, Proposition 1]). Let (M , g) be a compact Riemann surface with conical singularities
at points {p j}mj=1 ⊆ M with order {α j}mj=1. Then

∫

M

K dA+

∫

∂M

κ d`= 2π

 

χ(M) +
m
∑

j=1

α j

!

,

where K is the Gaussian curvature of g, κ is the geodesic curvature of g, χ(M) is the Euler characteristic
of M, and dA and d` are the Riemannian volume forms on M and ∂M, respectively.

Proposition 18 ([60, Lemma 3]). If dAg has a conical singularity of order β at p ∈ M \ ∂M, then

|z − a|
∂ u
∂ z

and |z − a|
∂ u
∂ z
→ 0

when z → a where z is a local complex coordinate system in a neighborhood of p, a = z(p), and dAg =
e2u|z − a|2β |dz|2.

13



We obtain the following result, which is central to framing the cone singularity placement problem
as a PDE constrained optimization.

Proposition 19. Let (M , g) be a compact Riemann surface. Let eg = e2u g be a conformal rescaling of the
metric with conical singularities at points {p j}mj=1 with orders {α j}mj=1 and zero Gaussian curvature (i.e.,
eK = 0). Then

(

∆u= K + 2π
∑m

j=1α jδp j
,

∂ u
∂ n = κ− eu

eκ,
(3.1)

where eκ is the geodesic curvature induced by eg.

Proof. Note that the Riemannian volume forms induced by eg are

fdA= e2udA, fd`= eud`,

where fdA and fd` denote the volume forms on (M , eg).
From the usual Gauss-Bonnet theorem we have

∫

M

K dA+

∫

∂M

κ d`= 2πχ(M).

Similarly, from Troyanov’s conical Gauss-Bonnet formula (Proposition 19) we have
∫

M

eK fdA+

∫

∂M

eκ fd`= 2πχ(M) + 2π
m
∑

j=1

α j .

From [60, Lemma 3] we obtain that u ∈ W 1,p(M) for some p ≥ 1. Hence, by working in local coordi-
nates and using the Sobolev trace theorem we conclude that

∫

M

∆u dA=

∫

∂M

∂ u
∂ n

d`.

We deduce from the Cherrier boundary conditions above that
∫

∂M

eκ fd`=

∫

M

eKe2u dA+

∫

∂M

eκeu d`=

∫

∂M

�

κ−
∂ u
∂ n

�

d`=

∫

∂M

κ d`+

∫

M

∆u dA.

By subtracting the above equality from the conical Gauss-Bonnet formula we obtain

0= 2π
m
∑

j=1

α j +

�

2πχ(M)−
∫

M

κ d`

�

−
∫

M

∆u dA= 2π
m
∑

j=1

α j +

∫

M

(K −∆u) dA,

where we used the usual Gauss-Bonnet formula in the second equality. Now we see that
∫

M

(∆u− K) dA= 2π
m
∑

j=1

α j .

Now since this same result holds where M is replaced by any open subset that contains all of the cone
points, and since it is zero otherwise we conclude that

∆u= K + 2π
m
∑

j=1

α jδp j

in the appropriate weak sense.
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The cone angles θi := −2παi describe the angle of opening when
the flattened surface is cut through cone points pi and laid out isomet-
rically in the plane. We can rewrite the above equation in terms of
the singular Yamabe equation in terms of the cone angles directly as

∆u= K −
m
∑

j=1

θ jδp j
,

and this is the form of the equation we will primarily in this thesis.

Remark. To understand the relationship between the cone angle in the
plane and the order of the cone singularity, we consider the prototypical
case of a Euclidean cone. Consider two rays from the origin meeting
with angle β (corresponding to θ j above) in R2 (see inset figure), and let C denote the quotient metric
space obtained by identifying these two rays.

We want to endow C with a Riemannian metric which induces the distance metric on C. Assume that
there exists a Riemannian metric of the form

g = ϕ2(r)
�

dr2 + r2dθ 2
�

in polar coordinates—although ϕ could also depend on θ , we assume it does not due to symmetry. Let
γ : S1→ C denote the (parallel and closed) curve r = r0. By measuring the length of γ with respect to this
metric we have

L(γ) =

∫ 2π

0

r0ϕ(r0) dθ = 2πr0ϕ(r0).

On the other hand, since this is a curve in the plane we can measure the length of γ as the angle times the
radius:

L(γ) = (2π− β)
∫ r0

0

ϕ(r) dr.

Equating these and letting M(r) =
∫ r

0 ϕ(s) ds we see

(2π− β)M(r) = 2πrM ′(r),

and by solving this ordinary differential equation we see that M(r) = r1− β
2π . Thus,

ϕ(r) = M ′(r) =
�

1−
β

2π

�

r−
β
2π .

Set β = −2πα to conclude that the Riemannian cone metric of this Euclidean cone is

g = (α+ 1)2r2α
�

dr2 + r2dθ 2
�

.

Note that this prototypical model of a conical singularity justifies the definition of a conformal cone singu-
larity provide earlier. Furthermore, it shows that the angle (of opening) is related to the order of the cone
singularity by the relationship β = −2πα.

3.2 Basic Problem

We recall the formulation of the optimal cones problem. Let (M , g) be a smooth surface. We want to
find a pointwise conformally equivalent metric eg = e2u g such that the new metric is flat away from
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finite number of cone singularities. We want to choose the placement and angles of the cone singular-
ities in an optimal way – that is in a way that minimizes the area distortion of the induced conformal
map.

Using the singular Yamabe equation (Eqn. 3.1) we can formulate our main problem as follows:

minimize
pi∈M ,αi∈R

E (u)

subject to ∆gu= K −
∑

αiδpi
in M

u= 0 on ∂M ,

�

Pcones

�

where E is a measure of area distortion induced by the conformal rescaling of the metric (to be defined
in Sec. 3.3), K is the Gaussian curvature of (M , g), and ∆g is the Laplace-Beltrami operator on (M , g).

3.2.1 Local Picture

A simpler, local perspective will prove very useful for both intuition and analysis—here we will assume
that M is homeomorphic to the unit disk. Instead of considering the above optimization problem over
the original manifold, we first consider an initial conformal flattening given by rescaling the the metric
by e2u0 where ∆gu0 = K in M with u0|∂M ≡ 0.

�

Pcones

�

then becomes

minimize
pi∈M ,αi∈R

E (u+ u0)

subject to ∆R2u=
∑

αiδpi
in M

u= 0 on ∂M ,

(3.2)

Note that the energy is now in terms of u + u0, since if we conformally rescale the metric again, we
obtain a new metric

eg = e2ue2u0 g = e2(u+u0)g.

We use ∆R2 to denote the Laplace-Beltrami operator on (M , e2u0 g) to emphasize the fact that in local
coordinates it is just the usual Laplacian in R2.

From this flat point of view we get a different perspective on the problem: given the function u0

describing the scale distortion in the initial flattening, find the best approximation by a finite weighted
sum of harmonic Green’s functions, i.e., solutions to ∆R2u = δp (as pictured in Fig. 3.1). This question
of best approximation has a fundamentally different flavor than simply picking extrema of Gaussian
curvature or peaks in the scale factor itself: it reminds us that the long tails of our harmonic Green’s
functions will also have an influence on the result. Hence, placing cones at local extrema may ad-
versely affect the solution elsewhere (as sometimes occurs with greedy strategies); conversely, cones
carefully arranged in flat regions can conspire to reduce distortion in regions of greater curvature (as
we sometimes observe in optimal solutions). From a formal analytical viewpoint, this perspective also
makes it easier to analyze the singular Yamabe equation since we can use classical results on the har-
monic Green’s functions for smooth subsets of R2. Of course, for this question to be meaningful we
must first answer the question of what it means for an approximation to be “best.”
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3.3 Measures of Area Distortion

How do we measure the area distortion of a conformal flattening? Springborn et al. [54] remark that
since a uniform global scaling changes a flattening only superficially, one can measure area distortion
via the (scale-invariant) Dirichlet energy of the conformal log-scale factors:

EDirichlet(u) =
1
2

∫

M

g(∇u,∇u) dA.

When this energy is small, it means that scaling is near-constant, i.e., low area distortion up to uniform
scaling. Unfortunately, this energy is not meaningful in the context of cone flattening. To see why,
consider an initial nonsingular conformal flattening via log scale factors u0 (as in Sec. 3.2). If the
subsequent scaling u satisfies

∆R2u= δp

for some point p ∈ M , then in local coordinates it is a smooth perturbation of a Euclidean harmonic
Green’s function, i.e.,

u(q) =
1

2π
log

1
‖q− p‖

+η(q),

for some η ∈ C∞(M ;R). One can easily show that for any ball B(p,ε) ⊂ M ,
∫

B(p,ε)
‖∇u‖2 dA∼

∫ ε

0

1
r

dr + c(η) = +∞,

and hence ‖∇(u + u0)‖2
g is not integrable. As a result, Dirichlet energy cannot distinguish between

distinct configurations of cone singularities: they all have infinite energy. In the discrete case, this
means that Dirichlet energy will be dependent on the resolution of mesh, since the scale factor due to
cones will be better resolved—and hence much larger—by a fine mesh than a coarse one (see Fig. 3.1);
a simple calculation shows that this blowup occurs at a rate of log(1/h), where h denotes the mean
edge length. Any algorithm which aims to place cone singularities in a way that minimizes EDirichlet

will therefore avoid placing singularities in densely sampled regions of a mesh—this turns out be a
practical issue for CETM, which drives cone angles to zero under refinement (Fig. 3.2). Moreover,
since EDirichlet penalizes only the local change in u, it can admit large variations in scale over a domain
with large diameter.

We will instead use the L2-norm of the log conformal factors to measure area distortion:

EL2(u) =

∫

M

|u|2 dA.

This energy is finite for any solution of the singular Yamabe equation, and hence converges to a finite
value under mesh refinement. As noted by Myles & Zorin [45], it is also a second-order approximation
of the nonlinear elastic energy [15]

Eelastic( f ) =
1
2

∫

M

min
R∈SO(2)

‖d f − R‖2 dA,

where f : M → R2 is the induced conformal flattening, and d f denotes the differential of f . In com-
puter graphics this energy is known as the as rigid as possible energy [53]; the energy EL2 is known in
mechanics as the true strain or Hencky strain [30].

Unlike EDirichlet, the L2 energy is not invariant to constant shifts in scale. More generally, one might
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Figure 3.1: Near a cone singularity, the scale factor u looks like a har-
monic Green’s function (far right), which gets significantly smoothed
out when sampled onto a discrete mesh (top row). Methods that pick
cones based on, e.g., peaks of the scale factor can therefore have very
different behavior on coarse and fine meshes.

Figure 3.2: Since the Dirichlet energy of a har-
monic Green’s function blows up under mesh
refinement, cone angles obtained in CETM by set-
ting u = 0 at the point of maximum distortion will
tend to zero for fine meshes.

want to quotient L2(M) out by constant functions and minimize the oscillation of u, which can be
written as

Eosc(u) =min
c∈R

∫

M

|u− c|2 dA=

∫

M

�

�u− avgM (u)
�

�

2
dA,

where

avgM u :=
1

Area(M)

∫

M

u dA.

This energy is invariant under constant shifts in scale. This behavior is desirable since ideally we do
not want to consider constant scaling as area distortion, i.e., we would like u= c for any fixed constant
c ∈ R. By jointly optimizing over the boundary conditions and the cone singularity placements, we find
that the minimizer with Eosc will also minimize EL2 .

For some applications one might also be interested in minimizing the worst area distortion. Unfortu-
nately, asking to minimize area distortion in the L∞ sense is again not meaningful in the presence of
cones, since scaling goes to infinity at every cone. An interesting question for future work is to consider
Lp norms for p much greater than 2, which might exhibit the desired behavior.

3.4 Relaxation

As noted in the introduction, without imposing a condition on the number of cone singularities, we can
make the area distortion arbitrarily close to zero. A short proof of this fact using the theory of optimal
transportation is given in Corollary 44. If we fix the number of cone singularities that we want to place
then the optimization problem

�

Pcones

�

becomes akin to combinatorial optimization problem, and we
do not expect to find any efficient algorithms for solving it directly. This motivates us to look for a
relaxed optimization problem that properly discretizes the underlying smooth optimization problem
and is efficiently solvable.
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Note that we can rewrite
�

Pcones

�

as

minimize
pi∈M ,αi∈R

E (u)

subject to µ=
∑

αiδpi

∆gu= K −µ in M

u= 0 on ∂M ,

(3.3)

The idea is to drop the hard constraint µ=
∑

αiδpi
, and instead incorporate it into the energy.

The naïve way to incorporate this soft-constraint into the energy is to use the sparsity inducing
L1-regularization. The resulting optimization problem reads

minimize
f ∈L1(M)

E (u) +λ‖ f ‖L1

subject to ∆gu= K − f in M

u= 0 on ∂M ,

�

PL1-relaxed

�

where λ > 0 is a specified tuning parameter. However, there are both serious practical and theoretical
issues with using the L1-norm to recover cone singularity configurations. In the smooth setting the exis-
tence of minimizers to

�

PL1-relaxed

�

does not hold in general. More precisely, for a solution to exist there
must be a minimizing sequence with a convergent subsequence, i.e., a sequence that is at least weakly
precompact in L1(M). The Dunford-Pettis theorem implies that a sequence is weakly precompact if and
only if it is equi-integrable [26, Theorem 2.54]. However, neither a generic minimizing sequence nor
a sequence converging in L1 to a Dirac delta measure will be equi-integrable. Hence, even though the
discrete, finite dimensional `1 problem has solutions, they are not concentrated at isolated vertices, nor
stable with respect to tessellation (see Fig. 3.3). Furthermore, since this problem arises in the smooth
setting a different choice of finite elements does not fix this problem.

As discussed in Sec. 2.2, the natural generalization of the L1-space is the space of measures. More-
over, this space exhibits the necessary compactness properties to guarantee the existence of minimiz-
ers! We find that the sparsity-inducing property of the L1-norm naturally carries over to theM (Y )-
norm, and the numerical issues discussed above do not arise when the optimization problem over the
space of measures is treated appropriately. To summarize our approach: rather than optimizing over
the placement and angles of the cone singularities, we optimize over all finite signed Radon measures
µ and add a sparsity promoting regularization. We introduce a tuning parameter λ ≥ 0, and relax
�

Pcones

�

to obtain

minimize
µ∈M (M)

E (u) +λ‖µ‖M (M)

subject to ∆gu= K −µ in M

u= 0 on ∂M ,

�

Prelaxed

�

Using the dual characterization ofM (Y ) presented in Sec. 2.2 we will be able to employ Fenchel-
Rockafellar duality to obtain equivalent optimization problems framed over function spaces. These
reformulations will lend themselves to efficient numerical techniques for determining the optimal
placement of cone singularities. A simple and illustrative comparison between the results obtained
from the L1 regularized

�

PL1-relaxed

�

and the measure norm regularized
�

Prelaxed

�

is presented in Fig. 3.3.
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Figure 3.3: Left: naïvely discretizing measures as piecewise linear functions and using L1 regularization yields solutions that
have low area distortion but are not concentrated at isolated points. Right: By considering a dual problem formulated in terms of
ordinary functions, we obtain a much better numerical scheme for computing isolated cones.

3.5 Generalizations

In this section, we generalize the basic formulation to allow greater control over how and where cone
singularities are distributed. For this purpose we consider two distinct regions UE , an open subset of
M , and UR , a compact subset of M . We will only measure the area distortion over UE , only place cone
singularities in UR . This is useful for placing cones only in, say, visible regions (Sec. 6.2.1), or for only
optimizing for prescribed boundary conditions (Sec. 6.2.3); see examples in Figures 6.8 and 3.4.

Furthermore, we introduce two positive weight functions wE , wR ∈ C∞(M ;R>0) that are bounded
away from zero. Now we consider the generalized energy

EwE
L2 (u) :=

1
2

∫

UE

|u|2wE dA,

and the generalized regularization

RwR (µ) :=

∫

UR

wR d|µ|.

Here |µ| is the total variation measure associated to µ. By re-weighting the energy and the measure
space regularization we incentivize our optimization problem to place cone singularities in the regions
where wR is small in a way that minimizes the area distortion in the regions where wE is large. As
described in Sec. 6.2.1, this reweighting can be used to promote the placement of cone singularities
in geometrically meaningful locations; a natural reweighting of the area distortion is given by a local
feature size, which we express as a function of the Gaussian curvature. We will often denote the terms
EwE

L2 and RwR as E and R , respectively.
We also extend the basic formulation to allow us to optimize over the boundary conditions as well.

One can either optimize over the Dirichlet boundary conditions, or alternatively one can optimize over
the geodesic curvature on the boundary by using the Cherrier formula. By using the Cherrier boundary
conditions we obtain a clear geometric interpretation of adding the measure-regularization on the
boundary. This generalization is treated simply, both analytically and algorithmically, by encoding the
boundary conditions in the solution operator (see Sec. 4.2 and Sec. 5.1).

Finally, we generalize our formulation to allow us to optimize over singularity configurations with
only positive cone angles. To achieve this we letM+(UR) denote the set of positive Radon measures.
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Figure 3.4: We can selectively restrict cone placement to any user-specified region. Here for instance, by shooting rays (top left)
we can determine the region visible from a particular point of view (bottom left). If we now restrict our search to this region—
while still penalizing distortion in the front—singularities that would ordinarily appear on the front (center) instead get “pushed”
to the back (right).

Now we set ι+ the associated indicator functions of this set. That is,

ι+(µ) :=

(

0 if µ ∈M+(Uµ),

+∞ else.

Remark. We can also optimize over the space of all negative measures, but in practice we find that many
models prefer no cone singularities over any configurations with only negative cone angles.

Our relaxed optimization problem now reads

minimize
µ∈M (UR )
h∈H1(M)

1
2

∫

UE

|u|2wE dA+λ

∫

UR

wR d|µ|

subject to ∆gu= K −µ in M

u= h on ∂M .

�

Pgeneralized

�

For simplicity and clarity of presentation we restrict much of our analysis to zero Dirichlet boundary
conditions. However, in our construction of the solution operator we will use Robin (mixed) boundary
conditions since well-posedness of the PDE with measure-valued right hand sides is extremely simple.
Of course, the underlying optimization problem is the same since we can consider the above optimiza-
tion (with either choice of boundary control) over all u ∈W 1,p(M) for suitably chosen p.
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Chapter 4

Theoretical Analysis

In this chapter we will analyze the optimization problem from Chapter 3 in the continuous setting,
formulate an appropriate optimization problem through convex duality, and analyze properties of the
minimizing measures. The setup and basic analysis of the elliptic control problem formulated over the
space of measures essentially follows the ideas presented by Clason & Kunisch [17, 18]. Our treatment
of the problem varies primarily in how we formulate the abstract framework and in the properties of
the minimizers that we care about and study. The main motivation of the abstract formulation is that a
number of the optimization problems [14, 17, 18] formulated over non-reflexive Banach spaces can be
treated in a single unified framework described below.

We organize the chapter as follows: we begin by presenting a fairly abstract optimization problem,
before specializing the framework to our basic optimization problem. Formulating the abstract control
problem distills and emphasizes the main features and assumptions of the cone singularity placement
problem. Next, we discuss the solution operator for the cones problem—that is, we study solutions to
Poisson equation with measure-valued right hand sides. In Sec. 4.3 we specialize the abstract frame-
work from Sec. 4.1 to our relaxed problem, and derive an optimality system in two ways: (1) through
Fenchel-Rockafellar duality, and (2) directly through Lagrange duality. These two approaches are re-
lated, and help emphasize different aspects of our relaxed control problem. In Sec. 4.4 we prove some
properties of the minimizing measures. In particular, we show that they cannot represent any cone
singularities; however, we show that they can be rounded to cones in a way that does not significantly
change the area distortion. Finally, we introduce and analyze a sequence of regularized problems
which will be useful for the purposes of discretization.

4.1 Abstract Framework

For the abstract framework, we consider the constrained optimization problem

minimize
µ∈M , u∈U

E (u) +R(µ)

subject to s(u,µ) = 0 in X ?.

�

Pabstract

�

Here, U andM are Banach spaces. The state and the control variables are related through the map
s : U ×M → X ?, where X is yet another Banach space.

For
�

Pabstract

�

to be well-posed, we assume the following:

Assumption 1. M ∼=C ?, where C is a separable Banach space.

Assumption 2. X and U are reflexive.

Assumption 3. E : U → R is bounded from below and C 1 Fréchet differentiable.
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Assumption 4. R :M → R is convex, proper, and weak-? sequentially lower semicontinuous. Further-

more, R is bounded from below and coercive.

Assumption 5. For every µ ∈M there exists a unique u ∈ U such that

s(u,µ) = 0 in X ?.

The associated solution operator S :M → U given by Sµ := u is affine, bounded, and

weak-? to strongly sequentially continuous, i.e.,

Sµn→ Sµ in U for all µn
?
*µ inM .

Using the solution operator, we can define reduced objectives for
�

Pabstract

�

. We define the reduced
energy as e :M → R as

e(µ) := E (Sµ),

and the reduced objective v :M → R as

v(µ) := e(µ) +R(µ) = E (Sµ) +R(µ).

Note that e is sequentially weak-? to strongly continuous since the energy is continuous and since the
solution operator is continuous.

We endowM with the weak-? topology, σ(M ,C ). Since C is separable, the unit ball inM with
the weak-? topology is metrizable, and thus sequentially precompact. In light of our assumptions and
this compactness property, a standard application of the direct method of the calculus of variations
gives us existence of minimizers.

Theorem 20. The constrained optimization problem
�

Pabstract

�

admits at least one globally optimal solution
(µ, u) = (µ, Sµ) ∈M × U.

Proof. First, note that

v := inf
µ∈M

v(µ) ∈ R

since v is bounded from below and since R is proper.
Now consider any minimizing sequence {µn}∞n=1 ⊆M . For n large enough we have that

R(µn)≤ v(µn)< v + 1.

Since R is coercive there exists c ∈ R satisfying

‖µn‖M ≤ c

for all n ∈ N. By the Banach-Alaoglu theorem we obtain a subsequence (not relabeled) such that
µn

?
*µ for some µ ∈M . Since v is weak-? sequentially lower semicontinuous we conclude that

v(µ)≤ lim inf
n→∞

v(µn) = v,

which implies that µ ∈M is the minimizer since we also have that v ≤ v(µ).

To determine the first order optimality conditions in this general framework, we will be unable to
use a black box like Fenchel-Rockafellar convex duality. However, we will still be able to characterize
the minimizers directly using the subdifferential. SinceM may not be reflexive, it is natural to define
the subdifferential with respect to the weak-? topology. That is, the subdifferential (denoted by ∂ to
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differentiate it from the usual subdifferential) of R :M → R is a subset of C (instead ofM ?):

∂R(µ) := {ψ ∈ C : 〈eµ−µ,ψ〉M×C ≤R(µ)≤R(eµ) for all eµ ∈M} .

Note that e is Fréchet differentiable since S and E are as well. For the sake of generality (this may not
hold in general!), we assume that the differential, de, is represented by an element in C in the sense
that

de(µ)[ν] = 〈ν,∇e(µ)〉M×C

for some ∇e(µ) ∈ C . As is usual in the calculus of variations and Riemannian geometry, we call this
the gradient of e at µ. In many cases this gradient will be characterized as the solution of an appropri-
ate adjoint PDE.

With the above setup, we go on to deduce the necessary first order optimality system for
�

Pabstract

�

.

Proposition 21. Let µ ∈M be a minimizer of
�

Pabstract

�

. Then −∇e(µ) ∈ ∂R(µ).

Proof. Since µ ∈M is a minimizer we see that

v(µ)≤ v(µ+ ε(µ−µ))

for all µ ∈M ,ε > 0. Furthermore, since R is convex we deduce

0≤ v(µ+ ε(µ−µ))− v(µ)≤ e (µ+ ε(µ−µ))− e(µ) + ε (R(µ)−R(µ)) .

Now by dividing by ε and taking ε→ 0+ we have

0≤ lim
ε→0+

e (µ+ ε(µ−µ))− e(µ)
ε

+ (R(µ)−R(µ)) = de(µ)[µ−µ] + (R(µ)−R(µ)) .

Rearranging and using the representation of ∇e(µ) in C we have

〈µ−µ,−∇e(µ)〉+R(µ)≤R(µ),

which is exactly −∇e(µ) ∈ ∂R(µ).

This simple abstract reformulation turns out to be incredibly expressive for a large class of PDE con-
strained optimizations. In particular, it can be used to properly formulate both parabolic and elliptic
optimal control problems that appear in the literature.

4.2 Poisson Equation with Measures

Recall that the singular Yamabe equation is simply a Poisson equation with a measure valued right
hand side. Since our relaxation is formulated over the space of Radon measures, we need to study the
existence and regularity of solutions to the partial differential equation

∆u= µ, (4.1)

for µ ∈M (M) and appropriate boundary conditions.

Weak Solutions For the weak formulation of Eqn. 4.1 with zero Dirichlet boundary conditions we
consider the bilinear form

a(u,ϕ) = (∇u,∇ϕ)L2(M ;T M) =

∫

M

g(∇u,∇ϕ) dA
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for u,ϕ ∈ H1
0(M). Note that a can be continuously extended to a bilinear form a : W 1,p

0 (M)×W 1,p′

0 (M)→
R by Hölder’s inequality for any p ∈ (1,+∞) where 1

p +
1
p′ = 1. Recall that by the Sobolev embedding

theorem we have for p′ > 2 that W 1,p′(M) continuously embeds into the space of Hölder continuous
functions. Thus,

W 1,p′

0 (M) ,→C0(M)

for p′ > 2. In the following we fix p′ > 2.

Definition 22. For µ ∈M (M) we say that u ∈W 1,p
0 (M) is a weak solution to Eqn. 4.1 if

a(u,ϕ) = 〈µ,ϕ〉M×C =
∫

M

ϕ dµ

for all ϕ ∈W 1,p′

0 (M).

In dimensions n ≥ 2 the classical variational framework is not equipt to deal with measure-valued
right hand sides. This essentially comes down to dimensionality considerations from the Sobolev em-
bedding theorems. We present two distinct approaches to obtain solutions to the above PDE—the first
is given by Green’s potentials, and is useful for proving a regularity result on the minimizing measure.
Alternatively, we will construct a solution operator via duality, which will be useful for directly applying
convex duality (this is not necessary if we are to immediately apply the abstract framework).

4.2.1 Solutions by Green’s Potentials

When obtaining solutions to the Poisson equation through Green’s potentials it is most natural to con-
sider Dirichlet boundary conditions b ∈ H1(M).

Remark. We just need b to be the trace of some function H1(M). I know for regions in RN that this space is
simply the fractional Sobolev space H1/2(∂M). However, I am not familiar with the definitions of the frac-
tional Sobolev spaces on abstract Riemannian manifolds. Therefore, I just consider boundary conditions
b ∈ H1(M), which automatically encodes this information.

Dealing with the boundary conditions b ∈ H1(M) poses no real challenge. Let ub ∈ H1(M) solve
(

∆ub = 0 in M ,

ub = b on ∂M ,

where the boundary conditions are understood in the trace sense. The existence of ub follows from
classical variational arguments:

Proposition 23. There exists a unique ub ∈ H1(M) solving the above Dirichlet boundary problem.

Proof. Let f := −∆b ∈ H−1(M). Consider the bilinear form a : H1
0(M)×H1

0(M)→ R given by

a(u,ϕ) =

∫

M

g(∇u,∇ϕ) dA,

which is clearly both bounded (continuous) and coercive. Now by the Lax-Milgram theorem we obtain
a unique eub ∈ H1(M) such that

a(eub,ϕ) = 〈 f ,ϕ〉H−1×H1
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for all ϕ ∈ H1
0(M). Now let ub := eub + b to see that

a(ub,ϕ) =

∫

M

g(∇eub,∇ϕ) dA+

∫

M

g(∇b,∇ϕ) dA= 〈 f , b〉H−1×H1 +

∫

M

g(∇b,∇ϕ) dA= 0.

It is now straightforward to obtain a solution to ∆u= µ with u|∂M = b: we simply need to solve
(

∆v = µ in M ,

v = 0 on ∂M ,

and then set u := v + ub. By the linearity of the trace operator, and by the linearity of the Laplace-
Beltrami operator, we see that u solves Eqn. 4.1 with u|∂M = b.

To obtain v solving the PDE from the previous page, we use the Green’s function on M . In particular,
let GM denote the Green’s function of the Laplace-Beltrami operator on (M , g):

Theorem 24 (Aubin [6, Theorem 4.17]). Let M be an oriented compact Riemannian manifold with
boundary of class C∞. There exists, GM , the Green’s function of the Laplace-Beltrami operator, which has
the following properties

(a) All functions ϕ ∈ C 2(M) satisfy

ϕ(p) =

∫

M

GM (p, q)∆ϕ(q) dA(q)−
∫

∂M

νi∇iqGM (p, q)ϕ(q) d`(q),

where ν is the unit normal vector oriented to the outside and d` is the Riemannian volume form on
∂M corresponding to the Riemannian metric ι?g where ι : ∂M → M is the canonical embedding.

(b) GM is C∞ on M ×M minus the diagonal.
(c) For p, q ∈ M and C = C(dist(p,∂M)) the following hold

|GM (p, q)|< C (1+ | log r|) ,

|∇qGM (p, q)|<
C
r

,

|∇2
qGM (p, q)|<

C
r2

.

(d) G(p, q)> 0 for p, q ∈ M.
(e) G(p, q) = G(q, p).

From (a) of the above theorem we see that µ ∈M (M) that

v(x ) :=

∫

M

GM (x , y) dµ(y)

satisfies ∆v = µ with v = 0 on ∂M in the sense of distributions (and even in the weak sense, although
it is a bit more work to show that v ∈ W 1,p

0 (M)). The regularity of distributional solutions to the Pois-
son equation follows from the elliptic regularity of the Laplace-Beltrami operator on (M , g).

4.2.2 Solutions Through Duality

One can alternatively construct solutions to the Poisson equation with measure-valued right hand sides
through duality. This method can be traced back to Stampacchia [55]. The construction we present
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here can be found in Clason & Schiela [19], although the notations and setup we use are restricted to
the precise elliptic control problem from our work.

The main idea is to construct an operator ∆? :C (M)→W 1,p
0 (M)

? for some p < 2 and then obtaing
an isomorphism ∆ := (∆?)? as the Banach space adjoint of ∆?. In this section we will primarily con-
sider zero Dirichlet boundary conditions, since adding boundary conditions in H1(M) follows in the
same way as before. The main benefit of constructing the solution operator through duality is that it
becomes clear how to use this operator for purposes of convex duality.

If one is to incorporate boundary conditions into this solution operator it becomes most natural
to consider the Robin boundary conditions since one immediately obtains well-posedness of solutions
with measures supported on the boundary—it is not clear how to show such well-posedness for Neu-
mann boundary conditions, and in light of the Sobolev trace theorem it does not even make sense for
Dirichlet boundary conditions.

Solution Operator Let dom(∆g)? denote the maximal subset of H1
0(M) where the operator

(∆g)? : dom(∆g)?→W 1,p′

0 (M)? =: W−1,p′(M)

ϕ 7→ (u 7→ ((∆g)?ϕ)(u) := a(u,ϕ)).

is an isomorphism. It follows from the classical Lp-elliptic regularity theory of the Laplace-Beltrami
operator that dom(∆g)? = W 1,p(M). Since W 1,p(M) is dense in C (M), we can consider the Banach
space adjoint ∆g := ((∆g)?)?.

∆g : dom∆g ⊂W 1,p′(M)→M (M),

where the maximal domain of definition dom∆g is given by

dom∆g :=
�

u ∈W 1,p′(M) : ∃cu ∈ R with ((∆g)?ϕ)(u)≤ cu‖ϕ‖C (M), ∀ϕ ∈ dom(∆g)?
	

.

To understand this operator directly note that for any u ∈ dom∆g , the linear map ϕ 7→ a(u,ϕ) defines
the element of the dual space C (M)? :

∆gu= a(u, ·).

By the Riesz representation theorem, ∆gu can be identified with an element ofM (M). By [12, Theo-
rem 2.21], the weak Laplace-Beltrami operator ∆g is closed and invertible since the pre-adjoint (∆g)?
is.

Remark (Robin Boundary Conditions). Fix µ ∈M (M) and consider the PDE
(

∆u= µ|M in M ,
∂ u
∂ n + u= µ|∂M on ∂M .

Instead of considering the usual bilinear form a from before, we can consider the continuous and coercive
bilinear form ea : H1(M)×H1(M)→ R by

ea(u,ϕ) := (∇u,∇ϕ)L2(M ;T M) + (u,ϕ)L2(∂M) =

∫

M

g(∇u,∇ϕ) dA+

∫

∂M

uϕ d`.

To see that ea encodes a weak formulation of the above PDE note that for u,ϕ ∈ C∞(M), by integration by
parts,

ea(u,ϕ) =

∫

M

(∆u)ϕ dA+

∫

∂M

�

∂ u
∂ n
+ u

�

ϕ d`.
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Now if ea(u,ϕ) = 〈µ,ϕ〉 for some µ ∈ C∞(M) for all suitible test functions ϕ then we see that the above
PDE is satisfied in the classical sense. As before, we continuously extend ea to a bilinear form W 1,p(M) ×
W 1,p′(M)→ R and define the solution operator above in the same way. Note that the integration by parts
does not change sign since by convention the Laplace-Beltrami operator is chosen to be positive-semidefinite
(unlike the usual Laplace operator in Rn).

To deal with the generalizations where we restrict the domains where we measure area distortion
and place cone singularities we introduce the following operator.

Extension by Zero Operator We now introduce the restriction operator

E? :C (M)→C (UR), (E?ϕ)(x ) = ϕ(x ) for all x ∈ UR .

Again, we utilize the Riesz representation theorem to consider the adjoint E := (E?)? as a mapping

E :M (UR)→M (M).

It is straightforward to see that E is the canonical extension by zero operator: for µ ∈ M (UR) and
ϕ ∈ C (M) we have

∫

UR

E?ϕ dµ=

∫

M

ϕ d (Eµ) .

Generalized Solution Operator Finally, we define the weak-? dual of the generalized solution operator
(with either zero Dirichlet or Robin boundary conditions)

S? : W 1,p′(M)?→C (UR), h 7→ E?(∆g)
−1
? h.

As before, set S = (S?)?:

S :M (UR)→W 1,p′(M).

Since all of these operators are bounded, it trivially follows that S = ∆−1
g E, and S is closed, i.e. if

µn
?
*µ inM (UR) and Sµn * u in W 1,p′(M) for some h ∈W 1,p′(M) then Sµ= u.

4.3 Existence and Duality for Optimal Cones

Recall the relaxed cone singularity placement problem

minimize
µ∈M (UR )

E (u) +R(µ)

subject to ∆gu= Ω−µ in M

�

Prelaxed

�

where Ω := K dA is the curvature 2-form on (M , g). Here E and R are the generalized notions of area
distortion and regularization from Sec. 3.5.

We begin by showing that this problem satisfies all of the assumptions of the abstract framework
(Sec. 4.1) to deduce existence of solutions. For this purpose we set

M :=M (UR), U :=W 1,p(M), C :=C (UR), and X :=W 1,p′(M).

We encode the constraint ∆u= Ω−µ through the state equation s : W 1,p(M)×M (UR)→W 1,p′(UR)?
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defined by

〈s(u,µ),ϕ〉W 1,p′ (M)?×W 1,p′ (M) := a(u,ϕ)− 〈(Ω−µ) ¬ UR ,ϕ〉,

where a : W 1,p(M)×W 1,p′(M)→ R is the bilinear form associated to the Laplace-Beltrami operator.

Proposition 25. The regularization R :M (UR)→ R is convex, proper, bounded from below, coercive, and
weak-? sequentially lower semicontinuous.

Proof. Convexity of R follows from the convexity of the total variation norm (i.e., |θµ+ (1− θ )ν|(E)≤
θ |µ|(E) + (1− θ )|ν|(E) for all Borel subsets E). Since R(0) = 0 we see that it is proper. Since R(µ)≥ 0
we see that it is bounded from below. For any µ ∈M (UR) we have that

R(µ)≥
�

inf
x∈UR

wR(x)
�

‖µ‖M (UR ),

and so we see that R is coercive. SinceM (UR) ∼= C (UR)? by the Banach-Alaoglu theorem (weak-?

compactness of the unit ball) we conclude that the norm ‖ · ‖M (UR ) is weak-? lower-semicontinuous. To

see that the reweighted regularization is also lower-semicontinuous consider a sequence µn
?
* µ and

define

νn(E) :=

∫

E

wR dµn, ν(E) :=

∫

E

wR dµ.

Note that

〈νn − ν,ϕ〉M×C =
∫

UR

ϕ d(νn − ν) =
∫

UR

ϕ ·wR d(µn −µ)→ 0

as n→ +∞ for all ϕ ∈ C (UR). Hence, νn
?
* ν. Since ‖νn‖M (UR ) =R(µn) we conclude that R is also

weak-? sequentially lower semicontinuous since the norm is.
To restrict the optimization to the space of positive measures we need to prove that indicator func-

tion ι+ is weak-? sequentially lower semicontinuous. This follows easily since

ι+(µ) 6= +∞ ⇐⇒ 〈µ,ϕ〉M×C ≥ 0

for all continuous ϕ ∈ C (UR) satisfying ϕ ≥ 0 pointwise.

Proposition 26. The area distortion energy E : W 1,p(M)→ R is continuously Fréchet differentiable and
bounded from below.

Proof. Let u, v ∈ W 1,p(M). Since W 1,p(M) ,→ L2(M , dA) we can use the Lebesgue dominated conver-
gence theorem to conclude that

∂ E
∂ v
(u) = lim

t→0

1
2

∫

UE

�

|u+ t v|2 − |u|2

t

�

wE dA=

∫

UR

uvwE dA.

Since the mapping v 7→ ∂ E
∂ v (u) is clearly a continuous linear functional on W 1,p(M) we see that E is

Gâteaux differentiable. Furthermore, the above expression for the Gâteaux differential shows that the
mapping

dE : W 1,p(M)→W 1,p(M)?

eu 7→ dE (eu)
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is continuous at u. Hence, E is Fréchet differentiable at u with the Fréchet differntial coinciding with
the Gâteaux differential. Furthermore, E is continuously Fréchet differentiable. Since E (u)≥ 0 we also
have that E is bounded from below.

Remark. In fact, E is continuously Fréchet differentiable in the weaker space L2(M , dA).

Theorem 27 (Existence of minimizers). The relaxed optimization
�

Prelaxed

�

admits a global minimizer.

Proof.

• Assumption 1 holds sinceM (M)∼=C (M)?.
• Assumption 2 holds by basic properties (i.e., Riesz representation theorem) of Sobolev spaces.

• Assumption 3 holds by Proposition 26.

• Assumption 4 holds by Proposition 25.

• Assumption 5 holds by the choice of the state equation s : W 1,p(M)×M (M)→W 1,p′(M) and the

construction of the solution operator from Sec. 4.2.

Now the existence of a global minimizer is a direct corollary of Theorem 20.

4.3.1 Applying the Abstract Framework

We now use the abstract framework to derive the first order optimality system described as variational
inequalities directly through Lagrange duality. Furthermore, by applying the abstract framework from
Sec. 4.1 we do not need to make any change of variables to make the solution operator linear. Instead,
we consider the solution operator SΩ(µ) := S(Ω− µ), where again Ω = K dA is the curvature 2-form
(note that SΩ is the solution operator needed in Assumption 5).

Consider the Lagrangian L :M (UR)×W 1,p(M)×W 1,p′(M)→ R defined as

L (µ, u,ϕ) := E (u)− 〈s(u,µ),ϕ〉W 1,p′ (M)?×W 1,p′ (M)

= E (u)− a(u,ϕ) + 〈(Ω−µ) ¬ UR ,ϕ〉M×C

=

∫

UE

|u|2 dA−
∫

M

g(∇u,∇ϕ) dA+

∫

UR

ϕ · K dA−
∫

UR

ϕ dµ.

Now by construction of the solution operator SΩ we see that

e(µ) =L (µ, SΩµ,ϕ)

for any for any µ ∈M (UR) and ϕ ∈W 1,p′(M).
Now fix any measure bµ ∈M (UR) and consider the corresponding scale factors bu = SΩbµ. Using the

chain rule to differentiate the reduced objective e we get

de(bµ)[ν] = dLu(bµ,bu,ϕ)[w] + dLµ(bµ,bu,ϕ)[ν]

for any variation ν ∈ M (UR), where w = SΩν. To simplify the above we take bϕ ∈ W 1,p′(M) to be a
weak solution of the adjoint equation

dLu(bµ,bu, bϕ)[ψ] = dE (bu)[ψ]− a(ψ, bϕ) = 0

for all ψ ∈W 1,p(M). Thus,

de(bµ)[ν] = dLµ(bµ,bu, bϕ)[ν] = −〈ν ¬ UR , bϕ〉M×C

for all ν ∈M (UR). We can express these computations concisely as
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Proposition 28. The gradient of the reduced energy e = E ◦ SΩ is given by

∇e(bµ) = − bϕ,

where ϕ ∈ C (UR) solves the adjoint equation

a(ψ, bϕ) = dE (bu)[ψ]

for all ψ ∈W 1,p(M).

We now express the adjoint equation as a weak formulation of a partial differential equation:

Proposition 29. The solution to the adjoint equation is a weak solution to ∆g bϕ = wEbu.

Proof. Expanding out a(ψ, bϕ) = dE (bu)[ψ] and using the Riesz identification of L2(M) with its dual we
see that

∫

M

g(∇ bϕ,∇ψ) dA=

∫

M

buψwE dA

Hence, ∆g bϕ = wEbu as desired.

Summarizing, if (µ, u) = (µ, S(Ω− µ)) is the optimal solution of our relaxed optimization problem.
Then there exists a unique adjoint state ϕ solving the adjoint state equation

a(ψ,ϕ) = dE (u)[ψ]

for all ψ ∈W 1,p(M). Expanding the adjoint equation in terms of differential operators, this means that
there exists a unique adjoint state ϕ ∈W 1,p′(M) such that

∆ϕ = wEu,

in the weak sense. Furthermore, by Proposition 21, ϕ satisfies the variational inequality

〈µ−µ,ϕ〉+R(µ)≤R(µ)

for all µ ∈M (UR). This is equivalent to ϕ ∈ ∂R(µ).
We can summarize the entire first order optimality system as follows:

Proposition 30. Let µ ∈ M (UR) denote the minimizing measure. Let u and ϕ denote the minimizing
states. Then the following holds.











∆u= Ω−µ,

∆ϕ = wEu,

ϕ ∈ ∂R(µ)

�

OScones

�

where the above Poisson equations are understood in the appropriately weak sense.

4.3.2 Applying Fenchel-Rockafellar duality

Since our relaxed optimization problem is convex we can directly apply Fenchel-Rockafellar duality
to obtain an equivalent optimization problem over the usual function spaces. However, sinceM (M)
is not reflexive, we will need to formulate a pre-dual problem that acheives our relaxed optimization
problem as it’s Fenchel-Rockafellar dual. We will use the following result to compute the Fenchel conju-
gates.
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Proposition 31 ([47, Theorem 23.5]). Let V be a Banach space, and let F : V → R be a proper convex
function, v ∈ V , and L ∈ V ?. Then F ?(L) = 〈L, v〉V ?×V −F (v) ⇐⇒ L ∈ ∂F (v).

To apply Fenchel-Rockafellar duality directly (cf. Theorem 2), we need to slightly reformulate
�

Prelaxed

�

. By making the change of variables σ := Ω− µ, the solution operator σ 7→ Sσ = u becomes
linear (instead of just affine linear). With this change, the optimization above now reads:

minimize
σ∈M (UR )

E (u) +R(Ω−σ)

subject to ∆u= σ

�

ePrelaxed

�

Theorem 32. The relaxed optimization problem
�

ePrelaxed

�

is the dual of

minimize
u∈L2(M ,dA)

1
2

∫

UE

|u|2

wE
dA−

∫

UR

ϕ ·Ω

subject to ∆?ϕ = u

|ϕ(x )| ≤ λwR(x ) for all x ∈ UR .

(4.2)

and the minimizers are related by the following optimality system










∆u= Ω−µ,

∆ϕ = wEu,

µ
¬
UR ∈ ∂ iλwR (ϕ).

�

OScones

�

Proof. Define F : L2(UE , dA)→ R by

F (u) := E
�

u
wE

�

=
1
2

∫

UE

|u|2

wE
dA.

From Proposition 26 and the chain rule we have that dF (u) = u/wE , where, as usual, we use the
Riesz identification of L2(M , dA) ∼= L2(M , dA)?. Now using Proposition 31 we deduce that F ? :
L2(UE , dA)→ R is given by

F ?(u) =
1
2

∫

UE

|u|2wE dA= E (u).

Similarly, define G :C (UR)→ R by

G (ϕ) := −
∫

UR

ϕ ·Ω+

(

0 if |ϕ(x)| ≤ λwR(x ) for all x ∈ UR ,

+∞ else.

Using the Riesz representation theorem for C (UR) we consider G ? :M (UR)→ R, and directly com-
pute for µ ∈M (UR)

G ?(µ) = sup

�∫

UR

ϕ d(µ+Ω) : ϕ ∈ C (UR), |ϕ(x )| ≤ λwR(x )

�

.

Let U+R denote the support of ((µ+Ω) ¬ UR )
+ and U−R denote the support of ((µ+Ω) ¬ UR )

−. Recall that
by the Jordan decomposition theorem these sets are disjoint. Now construct a sequence of continuous
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functions {ϕn}∞n=1 ⊂ C (UR) such that pointwise
(

ϕn(x )→ λwR(x ) for all x ∈ U+R ,

ϕn(x )→−λwR(x ) for all x ∈ U−R ,

as n→∞. By Fatou’s lemma we have that

G ?(µ)≥ lim inf
n→∞

∫

UR

ϕn d(µ+Ω) = λ

∫

UR

wR d|µ+Ω|

The reverse inequality is immediate from the inequality constraints on ϕ. Summarizing, we have
shown that G ? is the measure space regularization appearing in our relaxed formulation.

We use the adjoint of the injection W 1,p(M) ,→ L2(M) to identify L2(M) with a subset of dom S? =
W 1,p(M)?. Now a direct application of Fenchel-Rockafellar duality (Theorem 2) shows that

inf
v∈L2(M ,dA)

F (v) +G (S?v) = − min
σ∈M (UR )

F ?(Sσ) +G ?(−σ).

By the computations above

F ?(Sσ) +G ?(−σ) = E (u) +λR(Ω−σ),

where ∆u = σ. This shows the equivalence of our two formulations. Furthermore, the optimality
conditions from the theorem also follow from the Fenchel-Rockafellar duality theorem.

Remark. To enforce the condition that the measures are strictly positive or negative we simply replace the
indicator function in G with

(

0 if ±ϕ(x )≤ λwR(x ) for all x ∈ UR ,

+∞ else.

An identical computation reveals that

G ?± (µ) = λ
∫

UR

wR d|µ+Ω|+ ι±(µ),

as desired. Here G± denotes G with the corresponding indicator function above.

We claim that the variational inequality from the abstract formulation coincides with the subdiffer-
ential inclusion from the optimality system obtained from Theorem 32.

Proposition 33. Let µ ∈M (UR) and ϕ ∈ C (UR). Then

ϕ ∈ ∂R(µ) ⇐⇒ µ ∈ ∂ iwR (ϕ).

Proof. By using Proposition 31 we see

µ ∈ ∂ iwR (ϕ) ⇐⇒ iwR (ϕ) + i?wR (µ) = 〈µ,ϕ〉 ⇐⇒ R(µ) = 〈µ,ϕ〉

since iwR (ϕ) = 0 and i?wR =R . For any eµ ∈M (UR) we compute

〈eµ,ϕ〉=
∫

UR

ϕ(x ) deµ(x )≤
∫

U+R

wR(x ) deµ(x ) +

∫

U−R

wR(x ) deµ(x ) =R(eµ),

where U±R = UR ∩ supp(eµ±). Adding the R(µ) = 〈µ,ϕ〉 to the above gives us

〈eµ−µ,ϕ〉+R(µ)≤R(eµ)
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for all eµ ∈M (UR). Thus, by definition, ϕ ∈ ∂R(µ) as desired.

So we see that the direct approach using the Lagrangian gives the same optimality system as the
application of Fenchel-Rockafellar duality.

The main motivation for using the direct approach is directly applicable to a much larger class of
problems (i.e., S is nonlinear or E is not convex). On the other hand, the approach through convex
duality provides a simple black-box approach and emphasizes the intimate connection between sparse
optimization and state constrained optimization.

Another fundamental difference between the two approaches is that the Fenchel-Rockafellar duality
approach required us to formulate an optimization problem over the pre-dual space, whereas the direct
approach was easily formulated over the non-reflexive Banach spaceM (M) by simply considering the
subdifferential with respect to the appropriate (weak-?) topology.

Characterizing the Minimizers We now want to exactly characterize the support of the minimizers
using only the first order optimality system.

Proposition 34. Let µ be the optimizing measure, and let ϕ be the optimal adjoint state. We have that

suppµ+ ⊆ {x ∈ UR : ϕ(x ) = +wR(x )},

suppµ− ⊆ {x ∈ UR : ϕ(x ) = −wR(x )}.

Proof. This result follows from the optimality conditions presented in
�

OScones

�

. In particular, we will
use the condition that µ ∈ ∂ iλwR (ϕχUR ). From Proposition 31 and this subdifferential relationship we
have that

〈µ,ϕχUR 〉= iλwR (ϕχUR ) + i?λwR
(µ) =

∫

M

wR(x ) d|µ|(x ). (4.3)

In the second equality we use that fact that since iλwR is subdifferentiable at ϕχUR that ϕχUR is in the
effective domain of iλwR . Note that µ� |µ|, and so the Radon-Nikodym derivative sgnµ := dµ/d|µ| is
in L1(M , d|µ|). Using this and Eqn. 4.3 we obtain

∫

UR

sgnµ(x )ϕχUR (x ) d|µ|(x ) =
∫

UR

wR(x ) d|µ|(x ).

So we conclude that ϕχUR (x ) sgnµ(x ) = λwR(x ) for |µ|-almost-every x ∈ UR , it now immediately
follows that

suppµ+ ⊆ {x ∈ UR : sgnµ= +1} ⊆ {x ∈ M : ϕ(x ) = +wR(x )},

suppµ− ⊆ {x ∈ UR : sgnµ= −1} ⊆ {x ∈ M : ϕ(x ) = −wR(x )},

This proposition provides some intuition regarding why the minimizing measure should be sparse.
If ϕ was real analytic and wR was constant then we would immediately obtain that µ consists of only
Dirac measures. Of course, we shouldn’t expect ϕ to have such high regularity; nevertheless, the main
takeaway is that we expect ϕ and wR to only coincide on lower dimensional submanifolds of M . Of
course, there is no guarantee that these functions will only coincide on such lower dimensional sets.
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4.4 Regularity and Rounding

In this section we aim to more thoroughly understand the sparsity structure of the minimizing measures—
in particular, we want to answer the question of whether the relaxed optimization problem provides us
with cone singularities. Using our construction of the solution operator through Green’s potentials we
prove the negative result that the minimizing measures never represent any cone singularities. To rec-
tify this situation, we show that “rounding” the minimizing measures to linear combinations of Dirac
deltas does not substationally increase the area distortion.

In this section, we make the assumption that UR = UE = M . For simplicity we assume that the
boundary conditions are fixed to u|∂M = 0 and that wR ≡ 1. We also assume that M is homeomorphic
to the unit disk in R2 to allow us to perform an initial flattening—let u0 ∈ C∞(M) be the log confor-
mal factors which make (M , e2u g) flat. Using this initial conformal flattening, we can consider M as a
subset of R2 as described in Sec. 3.2.1.

Using the local picture, we can consider M as an open subset of R2 and the question is to optimally
approximate the scale factors u0 : M → R through a sum of harmonic Green’s functions. That is, we
can write our relaxed cones optimization using the initial log-conformal factors as

minimize
µ∈M (M)

E (u+ u0) +R(µ)

subject to ∆u= µ in M

�

Plocal

�

Here E is reweighted by e2u0 to ensure that our formulation is conformally invariant:

E (u) :=

∫

M

|u|2wE dA=

∫

M

|u|2wE e2u0 dx .

The regularization on the other hand is measured on the original (non-flattened) manifold. Now we
prove some small results regarding the structure of the minimizers.

Proposition 35. Let µ ∈M (M) be the optimizing measure. Then suppµ is compact in M. In particular,

suppµ ⊆ Mδ := {x ∈ M : dist(x ,∂M)> δ}

for some δ > 0. Furthermore, dist(suppµ+, suppµ−)> δ.

Proof. Recall that the adjoint state ϕ ∈ C (M) by the Sobolev embedding W 1,p′

0 (M) ,→ C (M). Since
ϕ|∂M ≡ 0 and since wR is bounded away from zero, we deduce that there exists some δ1 > 0 such that

|ϕ(x )|<
1
2

wR(x )

for all x ∈ M \Mδ1
. Now from Proposition 34 we deduce that suppµ+ ⊆ Mδ1

.
Similarly, since wR is bounded away from zero, we can find η > 0 such that wR(x ) > η for all

x ∈ M . Proposition 34 yields ϕ(x ) ≥ η in suppµ+ and ϕ(x ) ≤ −δ in suppµ−. By the continuity of ϕ
we deduce that there exists some δ2 > 0 such that

dist({x ∈ M : ϕ(x )≥ +η}, {x ∈ M : ϕ(x )≤ −η})> δ2.

Therefore, dist(suppµ+, suppµ−)> δ2. The desired result follows by taking δ =min{δ1,δ2}.

The following proposition guarantees that the maximal distortion obtained by solving our optimiza-
tion problem will be less than the distortion from the initial conformal flattening—this will be used to
prove that u ∈ H1(M), which implies the optimizing measure cannot contain Dirac deltas.
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Proposition 36. Let µ be the optimizing measure of
�

Plocal

�

, and let ∆u = µ with u = 0 on ∂M. Then
u ∈ L∞(M) with

‖u‖L∞(M) ≤ ‖u0‖L∞(M) +
�

inf
x∈M

wE (x )e
2u0(x )

�−1
.

Proof. As before, consider the adjoint state p ∈ C (M) that satisfies ∆R2 p = u− u0 with p = 0 on ∂M .
Assume, for the sake of contradiction, ‖u‖L∞(M) > ‖u0‖L∞(M) +

�

infx∈M wE (x )e2u0(x )
�−1

. Thus, there
exists ε > 0 such that the set

A :=
§

x ∈ M : |u(x )|> ‖u0‖L∞(M) +
�

inf
x∈M

wE (x )e
2u0(x )

�−1
+ ε
ª

has positive measure. Without loss of generality, we can assume that supx∈M u(x ) > ‖u0‖L∞(M) +
�

infx∈M wE (x )e2u0(x )
�−1
+ ε. By the maximum principle for logarithmic potentials [48, Corollary 3.3]

there exists some x 0 ∈ suppµ+ satisfying

u(x 0)> ‖u0‖L∞(M) +
�

inf
x∈M

wE (x )e
2u0(x )

�−1
+ ε.

Now let δ > 0 be such that dist(suppµ+, suppµ−)> δ (see Proposition 35). Note that A is open since u
is lower-semicontinuous. We deduce that A∩ B(x 0,δ) is open. Thus, we can find some 0< r < δ such
that B(x 0, r) ⊂ A∩ B(x 0,δ). Now since x 0 ∈ suppµ+ we have that ϕ(x 0) = λ > 0. Now let y ∈ C∞(M)
be a solution to

(

−∆y = −ε in B(x 0, r),

y = 0 on ∂ B(x 0, r).

By the maximum principle for the Laplace operator, we deduce that y(x 0) < 0. Now set Y := −ϕ − y.
Using the adjoint equation for ϕ as well as the lower bound of u in B(x 0, r) we see that

(

−∆Y = −e2u0 wE (u− u0) + ε ≤ 0 in B(x 0, r),

Y = ϕ on ∂ B(x 0, r).

Now by the maximum principle for subharmonic functions we conclude that supx∈B(x 0,r) Y (x ) =
Y (x max ) = ϕ(x max ) for some x max ∈ ∂ B(x 0, r). We conclude by noting that

ϕ(x max ) = Y (x max )≥ Y (x 0) = ϕ(x 0)− y(x 0)> ϕ(x 0) = λ.

This is a contradiction with the adjoint state constraint |ϕ(x )| ≤ λ for all x ∈ M . So we conclude that
‖u‖L∞(M) ≤ ‖u0‖L∞(M) +

�

infx∈M wE (x )e2u0(x )
�−1

, as desired.

Remark. It is unclear whether the above result holds when considering non-constant weighting wR .
The above argument is based on arriving to a contradiction with the adjoint state constraints |ϕ(x )| ≤
λwR(x ). Thus, the challenge with having a reweighted regularization is in making sure that wR(x 0) >
wR(x max ). Alternatively, we can try to reweight the functions y and Y to incorporate sup wR(x ), but I
could not see how to make this work consistently.

To see why the L∞ bound will show that u ∈ H1
0(M) we first consider the case when µ ∈ C∞(M).

Lemma 37. Let f ∈ C∞c (M), and consider the measure µ given by dµ= f dA. Then
∫

M

u(x ) dµ(x ) =

∫

M

‖∇u(x )‖2
g dA(x ),
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where ∆u= µ with u= 0 on ∂M.

Proof. Since f is smooth, it is clear that u is smooth. Integration by parts reveals
∫

M

u(x ) dµ(x ) =

∫

M

u(x ) f (x ) dA(x ) = −
∫

M

u(x )∆u(x ) dA(x ) =

∫

M

‖∇u(x )‖2
g dA(x ).

Here we used the fact that u vanishes on ∂M in the integration by parts to obtain an especially simple
expression for the H1(M)-norm.

By an approximation argument we will be able to show that the above result holds even when µ is
not absolutely continuous with respect to the Riemannian volume form.

Theorem 38. The optimizing measure µ ∈ H1
0(M)

?.

Proof. Since ∆u= µ we have that
∫

M

u(x ) dµ(x )≤ ‖u‖L∞(M)‖µ‖M .

From Proposition 36 we see that ‖u‖L∞(M) is finite, and so the above expression is finite.
To show that the left hand side is the L2-norm of ∇u we use Lemma 37 and a simple approximation

argument: Let ηε be the family of standard mollifiers, and define µε := ηε ∗ µ̄. Then we know that
µε ∈ C∞(M ;R) and µεdx → µ̄ inM (M) as ε→ 0+. Set uε := S (µεdx ). Then by Lemma 37 we have
that

‖∇uε‖2
L2(M ;T M) =

∫

M

uε dµε.

Now by standard properties of mollifiers we have

lim
ε→0+
‖∇uε‖2

L2(M ;T M) = ‖∇ū‖2
L2(M ;T M);

in particular,

‖∇ū‖2
L2(M ;T M) = lim

ε→0+
‖∇uε‖2

L2(M ;T M) = lim inf
ε→0+

∫

M

uε dµε ≤
∫

M

u dµ.

Thus,

‖∇u‖2
L2(M ;T M) ≤ ‖u‖L∞(M)‖µ‖M < +∞.

The Poincaré inequality shows u ∈ H1
0(M). Recalling the isomorphism ∆ : H1

0(M) → H−1(M) we
deduce µ ∈ H−1(M).

This technical result is important since it tells us that the optimizing measure cannot consist of any
Dirac deltas. This is because the Dirac delta measure is not in H1

0(M)
? since dim M = 2. Intuitively,

this is because every Dirac delta (or cone singularity) can be rounded to a slightly “smoothed” out
version in a way that brings down the area distortion in a very small way.

Although we do not have Dirac deltas in H1
0(M)

?, numerically we find that the minimizers are very
close to Dirac deltas. We now want to round the minimizing measure to a collection of delta measures.
To begin to describe a rounding procedure we need to describe what it means for two measures to be
close.
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Optimal transportation provides the natural framework to discuss the similarity of measures. Recall
that the Wasserstein distance between two probability measures µ,ν is given by

dW2
(µ,ν) :=

�

inf
π∈Π(µ,ν)

∫

M×M

‖x − y‖2 dπ(x , y)

�1/2

.

We will show that the H−2-norm is exactly our area distortion measure. Hence, to show that round-
ing is appropriate we need to show that the Wasserstein spaces embed continuously into H−2(M).
Recall that H−2(M) is the dual space H2

0(M)
?. Using Lagrange multipliers and the definition of the

dual norm we obtain the following:

Proposition 39. Let µ ∈M (M) ,→ H−2(M). Then

‖µ‖H−2(M) =

�∫

M

|u|2 dx

�1/2

where ∆u= µ in M with u|∂M ≡ 0.

We first prove our embedding result when the domain M is simply a ball in R2. In what follows, Φ
the fundamental solution of the Laplace operator in R2.

Theorem 40. Let R> 0 and let P (B(0, R)) denote the space of probability measures supported in B(0, R)
in R2. Then the identity map

id :
�

P (B(0, R)), dW2

�

→
�

P (B(0, R)),‖ · ‖H−2(B(0,R))

�

is a continuous embedding.

Proof. Without loss of generality, let R = 1/4, and write B := B(0, R). Fix µ,ν ∈ P (B(0, R)). Let
π ∈ Π(µ,ν) be any transport plan between µ and ν. We estimate ‖µ− ν‖H−2(B(0,R)) as follows:

‖µ− ν‖2
H−2 =

∫

B

|S (µ− ν) (x )|2 dx

=

∫

B

|Φ ∗ (µ− ν)(x )|2 dx

=

∫

B

�∫∫

B×B

Φ(x − y)−Φ(x − z) dπ(y , z)

�2

dx

≤
∫∫

B×B

∫

B

(Φ(x − y)−Φ(x − z))2 dx dπ(y , z)

≤ 2

∫∫

B×B

∫

Ay ,z

(Φ(a)−Φ(a+ y − z))2 da dπ(y , z),

where Ay ,z := {a ∈ B(0,2R) : |a| ≤ |a+ y − z|}. Note that 0≤ ln |a+ y − z| − ln |a| ≤ |y−z|
|a| and that

|ln |a| − ln |a+ y − z|| ≤ |ln |a|| .
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Now let δ = 1
2 |y − z|. Continuing our estimates, we find

‖µ− ν‖2
H−2 ®

∫∫

B×B

∫

Ay ,z

(ln |a| − ln |a+ y − z|)2 da dπ(y , z)

®
∫∫

B×B

�

∫

B(0,δ)
ln2 |a| da+

∫

Ay ,z\B(0,δ)

|y − z|2

|a|2
da
�

dπ(y , z)

®
∫∫

B×B

|y − z|2 ln2 |y − z|+ |y − z|2 ln |y − z| dπ(y , z)

®
∫∫

B×B

|y − z| dπ(y , z)

®
�∫∫

B×B

|y − z|2 dπ(y , z)

�1/2

.

Now let π be the transport plan that minimizes the quadratic Wasserstein distance, and since the above
estimates hold for all transport plans we deduce

‖µ− ν‖2
H−2 ®

�∫∫

B×B

|y − z|2 dπ(y , z)

�1/2

= dW2
(µ,ν).

Corollary 41. Let Y ⊆ R2 be an open set that admits a Green’s function. Then the identity map

id :
�

P (Y ), dW2

�

→ (P (Y ),‖ · ‖H−2)

is a continuous embedding.

Proof. Let R> 0 be such that Y ⊆ B(0, R). By [29, Theorem 3.2.12] we have

GY (x , y)≤ GB(0,R)(x , y)

for all x , y ∈ Y , where these are the Green’s functions on Y and B(0, R) respectively. Hence,

‖µ− ν‖H−2(Y ) ≤ ‖µ− ν‖H−2(B(0,R)) ≤ c
q

dW2
(µ,ν)

by using the previous theorem.

The following general corollary follows by using a partition of unity to break up the support of a
measure into single coordinate charts. In each chart we have the necessary metric bounds from the
previous corollary. Finally, the result holds since M is compact and so only a finite number of charts are
in play.

Corollary 42. Let (M , g) be a compact Riemannian 2-manifold. Then the identity map

id :
�

P (M), dW2

�

→ (P (M),‖ · ‖H−2)

is a continuous embedding.

Following [5, 43], we extend the previous results to the case of signed measures by defining

W2(µ,ν) := dW2
(µ+ + ν−,ν+ +µ−).

Note that, unlike the usual Wasserstein distance, W2 is not a distance. Nevertheless, it provides an
appropriate similarity measure for modeling the merging of cone singularities.
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Figure 4.1: Top: for extremely fine meshes of very smooth surfaces (here, a hemisphere with 256k faces) our algorithm can
produce cones arranged in tiny clusters rather than at isolated vertices. Bottom: A rigorous stability analysis shows that merging
these cones to a nearby vertex (as shown here) cannot yield more than a miniscule change in area distortion, as indicated by red
coloring. In practice, such merging is almost never needed.

The following result is a straight forward application of the Hahn-Banach theorem and the Riesz
representation theorem for the dual space of continuous functions.

Lemma 43. The vector space of linear combinations of Dirac deltas, Diracs(M), supported at points in Y is
dense inM (M) endowed the weak-? topology.

Proof. By the Hahn-Banach theorem, to show that

Diracs(M)
σ(M ,C )

=M (M)

it suffices to show that the only continuous (with respect to the weak-? topology) linear functional L :
M (M)→ R that satisfies L(µ) = 0 for all µ ∈ Diracs(M) is given by L ≡ 0. By the Riesz representation
theorem we know that every weak-? continuous linear functional L can be represented by a continuous
function ϕ ∈ C (M) by

L(µ) =

∫

M

ϕ dµ.

Now consider such a linear functional annihilating Diracs(M). Now for every p ∈ M we have that

L(δp) =

∫

M

ϕ dδp = ϕ(p) = 0,

and so ϕ ≡ 0, which implies that L ≡ 0. Hence, Diracs(M) is dense inM (M) with the weak-? topology.

We now can recover a well-known result with very little effort.
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Corollary 44. Let (M , g) be a compact 2-manifold. Then there exists a configuration of cone singularities
such that the area distortion of the resulting conformal flattening is arbitrarily small.

Proof. Fix ε > 0. Let Ω ∈M (M) denote the curvature 2-form. Note that E (u) = 0 when ∆gu = Ω−Ω.
Find δ > 0 such that

�

�E (uΩ)−EL2(uµ)
�

�< ε

for all µ ∈ M (M) with W2(Ω,µ) < δ. Here ∆uµ = Ω − µ and ∆uΩ = Ω − Ω = 0, both with zero
Dirichlet boundary conditions. We can find such a δ > 0 using Theorem 40. By Lemma 43 there
exists a sequence of finite linear combinations of delta measures {µn}∞n=1 such that µn

?
* Ω. By [43,

Proposition 3.8] we deduce that

W2 (µn,Ω)→ 0

since M is compact and metrizable. Take N ∈ N large enough such that W2(µN ,Ω)< δ, and write

µN =
m
∑

i=1

αiδpi
, αi ∈ R, pi ∈ M .

It immediately follows that E (uµN
)< ε, as desired.

4.5 Moreau-Yosida Regularization

Numerically realizing optimization problems formulated over the non-reflexive space of measures may
not be straightforward, and so we used the duality framework to obtain an equivalent optimization
problem formulated over the usual function spaces. However, further numerical instabilities arise due
to the extremely low regularity of the minimizers. In particular, if we try to directly use the optimality
system to recover the minimizing measure we end up with serious numerical errors.

To derive a numerically stable and efficient algorithm we consider a sequence of regularized prob-
lems formulated over an intermediate Hilbert space. We begin by presenting this regularization in the
context of the abstract framework, before specializing the results to our original cone parameteriza-
tion problem. This regularized problem is introduced and analyzed in Clason & Kunisch [18]. Here,
we present direct proofs based on elementary methods—such an exposition is clear with the abstract
formulation of the problem.

4.5.1 Abstract Formulation

Let H be a Hilbert space such that C ,→ H, where the embedding is dense. We identifty H ∼= H?

using the Riesz representation theorem for Hilbert spaces. We write (µ,ν)H and ‖µ‖H to denote the
inner product and norm in H. Assume that the inner product on H is agrees with the duality pairing
〈·, ·〉M×C , i.e.,

〈µ,ϕ〉M×C = (µ,ϕ)H , for all µ ∈ H, ϕ ∈ C .

Hence, we have the following evolution triple:

C ,→ H ∼= H? ,→M .

Since C is densely embedded in H we deduce that the adjoint map H? ,→M is injective. As is com-
mon in the study of evolutionary partial differential equations we will use the above evolution triple

41



(also known as rigged Hilbert space or as a Gelfand triple) to obtain better behaved optimization prob-
lems framed over the Hilbert space.

The regularized versions of
�

Pabstract

�

are parameterized by γ > 0:

minimize
µ∈H, u∈U

E (u) +R(µ) +
γ

2
‖µ‖2

H

subject to s(u,µ) = 0 in X ?.

�

Pγabstract

�

We also write (by a slight abuse of notation) S : H → U to denote the solution operator restricted to
this Hilbert subspace.

To understand why the regularization formed over the Hilbert space is better behaved, note that for
suitable choices of H and s(·, ·) the solution operator S will map H into a subspace (possibly a subset
depending on the linearity of S) of much higher regularity than generic elements in S(M ). Our goal
now is to discuss existence of solutions to

�

Pγabstract

�

and show that solutions to this problem converge
(in an appropriate topology) to minimizers of

�

Pabstract

�

.

Proposition 45. The problem
�

Pγabstract

�

admits a global solution
�

µγ, Sµγ
�

∈ H × U.

Proof. This is another direct application of the direct method. Since the cost functional contains the
norm-squared, ‖ · ‖2

H , it is clear that any minimizing sequence will be bounded in H. Hence, we can
extract a weakly convergent subsequence in H (which also converges weakly-? inM ). This limit is in
fact a minimizer.

In a method that is completely analogous to the unregularized case we can obtain a necessary opti-
mality system for

�

Pγabstract

�

. First we consider the reduced energy of
�

Pγabstract

�

eγ : H → R

µ 7→ e(µ) +
γ

2
‖µ‖2

H = E (Sµ) +
γ

2
‖µ‖2

H .

Remark. For the optimization problem
�

Prelaxed

�

we will take H = L2(UR). This choice is motivated by the
relationship

‖µ‖M (UR ) = ‖µ‖L1(UR )

for µ ∈ H (under an appropriate identification H ⊂M ).

Proposition 46. Let µγ ∈ H be a minimizer of
�

Pγabstract

�

. Then −∇eγ(µγ) ∈ ∂R(µγ).

The rest of the necessary optimality system from
�

Pabstract

�

stays the same. Since the duality pairing
inM ∼= C ? is compatible with the inner product in H we can easily compute the gradient of eγ: for
ϕ ∈ C we compute

deγ(µ)[ϕ] = de(µ)[ϕ] + γ(µ,ϕ)H
= 〈∇e(µ),ϕ〉M×C + γ(µ,ϕ)H
= (∇e(µ) + γµ,ϕ)H .

Therefore, ∇eγ(µ) =∇e(µ) + γµ.
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Since we are dealing with a more regular optimization problem, we will be able to say more about
the minimizers µγ. From Proposition 46 it immediately follows that

µγ = argmin
µ∈H

�

(∇e(µγ),µ)H +
γ

2
‖µ‖2

H +R(µ)
�

.

This expression justifies calling
�

Pγabstract

�

a Moreau-Yosida regularization. Furthermore, even though this
relationship includes µγ on both sides of the equation it can be elegantly expressed using the proximal
map of R . Further discussion of the proximal map is postponed to Chapter 5.

4.5.2 Convergence of the Regularized Problems

Before we show that the regularized problems converge to the original problem as γ → 0+ we show
that the minimal cost converges as γ→ 0+. For notational convenience let’s define

vγ : H → R

µ 7→ v(µ) +
γ

2
‖µ‖2

H = eγ(µ) +R(µ) = E (Sµ) +R(µ) +
γ

2
‖µ‖2

H .

For γ≥ 0 define the optimal value function o : [0,+∞)→ R by

o(γ) := vγ(µγ),

where µγ is a minimizer of
�

Pγabstract

�

. When γ = 0 we are referring to the quantities associated to the
original unregularized problem. We can now obtain analogous results to [33, Theorem 4.1] through
completely elementary methods regarding the concavity and differentiability of the optimal value
functional:

Proposition 47. The optimal value function o : [0,+∞)→ [v(µ),∞) is concave and differentiable for
(L 1-)almost every γ > 0. Furthermore,

o′(γ) =
1
2
‖µγ‖

2
H .

Proof. Fix γ0,γ1 > 0, and θ ∈ (0,1). By minimality of vγ0
(µγ0
) and vγ1

(µγ1
) we have

θo(γ0) + (1− θ )o(γ1)≤ θ vγ0
(µθγ0+(1−θ )γ1

) + (1− θ )vγ1
(µγ0
)

= v(µθγ0+(1−θ )γ1
) +
θγ0

2
‖µθγ0+(1−θ )γ1

‖2
H +
(1− θ )γ1

2
‖µθγ0+(1−θ )γ1

‖2
H

= vθγ0+(1−θ )γ1
(µθγ0+(1−θ )γ1

)

= o(θγ0 + (1− θ )γ1).

Thus, v is concave. Note that every concave function is (locally) Lipschitz, and so it is differentiable
almost everywhere by Radamacher’s theorem.

Now we compute the first derivative of o. For ε > 0 we see

o(γ0 + ε)− o(γ0)
ε

≤
jγ0+ε(µγ0

)− jγ0
(µγ0
)

ε
=

1
2
‖µγ0
‖2

H ≤
jγ0
(µγ0
)− jγ0−ε(µγ0

)

ε
≤

o(γ0)− o(γ0 − ε)
ε

.

Taking ε→ 0+ yields

d+o
dγ
(γ0)≤

1
2
‖µγ0
‖2

H ≤
d−o
dγ
(γ0),
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where d±o
dγ denote the directional derivatives of o with respect to γ. Thus, o′(γ) =

1
2
‖µγ‖

2
H .

To show convergence of the regularized functionals (the values of the minimizers, not necessarily
the minimizers themselves) for γ→ 0+ it suffices to show that o is continuous at zero. To deduce such
convergence we only need the following additional assumption:

Assumption 6. For µ ∈M there exists a sequence {µn}∞n=1 ⊂ H satisfying

µn
?
*µ inM and R(µn)→R(µ) as n→ +∞.

Proposition 48. The optimal value function o is continuous. In particular, o(0) = limγ→0+ o(γ).

Proof. Fix any minimizer of the original problem µ ∈ M and consider a sequence {µn}∞n=1 ⊂ H such

that µn
?
*µ inM and R(µn)→R(µ). Then for all γ > 0 and n ∈ N we compute

o(0) = v(µ)≤ v(µγ)≤ v(µγ) +
γ

2
‖µγ‖

2
H

= o(γ)

≤ v(µn) +
γ

2
‖µn‖2

H .

(4.4)

By the convergence of µn
?
*µ and R(µn)→R(µ) we have

v(µn) = e(µn) +R(µn)→ e(µ) +R(µ) = v(µ)

as n→ +∞. Now fix ε > 0 and take N � 1 large enough such that

v(µ)≤ v(µN )≤ v(µ) +
ε

2
.

Using this in Eqn. 4.4 we obtain

o(0)≤ o(γ)≤ v(µN ) +
γ

2
‖µN‖2

H ≤ o(0) +
ε

2
+
γ

2
‖µN‖2

H .

Since this inequality holds for all γ > 0, we can take γε ≤ ε/‖µN‖2
H to obtain that

v(µ)≤ o(γε)≤ v(µ) + ε.

Taking ε→ 0+ shows the continuity of o at zero.

This continuity implies (up to a subsequence) the weak-? convergence of the regularized minimizers
µγ to µ as γ→ 0+.

Theorem 49. Consider a sequence γn → 0 as n→ +∞, and let µγn
∈ H be the minimizers of

�

Pγabstract

�

.
There exists a minimizer µ ∈M of

�

Pabstract

�

and a subsequence of γn (not relabeled) such that

µγn

?
*µ

inM as n→ +∞. If the problem
�

Pabstract

�

has a unique solution µ ∈M then µγ
?
* µ for any sequence

γ→ 0+.

Proof. Note that the values of R(µγn
) are bounded by

R(µγn
)≤ vγn

(µγn
)≤ E (Seµ) +R(eµ)
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due to the optimality of vγn
(µγn
) for any fixed eµ ∈ M . Since R is coercive, {µγn

} is bounded. Hence,

we can extract a subsequence of γn (again, not relabeled) such that µγn

?
* bµ for some bµ ∈M . Due to

the weak-? sequential lower semicontinuity of v it follows that

v(bµ)≤ lim inf
n→+∞

vγn
(µγn
) = o(0) = v(µ)

by Proposition 48. Hence, bµ ∈M is a minimizing solution of
�

Pabstract

�

.

Recall µγn

?
* µ is equivalent to every susbequence having a further subsequence which converges

to µ. If µ ∈ M is the unique minimizer then the convergence of the entire sequence γn → 0+ follows
since we can apply the above result to an arbitrary subsequence {µγnk

}∞k=1 ⊆ {µγn
}∞n=1. Since this holds

for every sequence γn→ 0 as n→ +∞ we conclude that µγ
?
*µ as γ→ 0+.

4.5.3 Regularization for Optimal Cones

We finally return to our convex optimization problem
�

Prelaxed

�

. As noted before, we consider the
Hilbert space H = L2(UR , dA). It obviously satisfies the assumption that C (UR) is densely embed-
ded in L2(UR , dA) and so the adjoint embedding L2(UR , dA) ,→ M (UR) is injective. Explicitly, the
embedding is given by the map µ ∈ L2(UR , dA) 7→ µ dA.

Remark. Note that for the space L2(UR , dA) to be a meaningful (non-trivial) vector space we need to
require that UR is the closure of an open set. Furthermore, if we are to assume total boundary control then
instead of considering H = L2(UR , dA) we consider the Hilbert space

H = L2(UR , dA)⊕ L2(∂M , d`),

where dA and d` are the Riemannian volume forms on M and ∂M, respectively. It is necessary to make
this distinction since the boundary ∂M is of measure zero with respect to the volume form on M, and so
the L2-space would be completely agnostic to values on ∂M.

The regularized sequence of problems can be written as

minimize
µ∈M (UR ),
u∈W 1,p(M)

E (u) +R(µ) +
γ

2
‖µ‖2

L2(M)

subject to ∆u= Ω−µ.

�

Pγrelaxed

�

Recall that the area distortion energy

E (u) :=

∫

UE

|u|2wE dA

is convex. Since the solution operator for the singular Yamabe equation is affine linear we conclude
that the reduced value functional e :M → R given by e = E ◦ SΩ is also convex. Thus, we conclude that
�

Pγrelaxed

�

admits a unique minimizer since the reduced value functional

vγ(·) = v(·) +
γ

2
‖ · ‖2

H

is strongly convex.

Proposition 50. There is a unique solution to
�

Pγrelaxed

�

.

To ensure that we have convergence of the regularized problems to
�

Prelaxed

�

we need to verify As-
sumption 6 in this setting.
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Proposition 51 (Assumption 6.). Let U1 ⊂ M be an open subset and U2 ⊂ ∂M be an open subset in the
induced topology on ∂M. Set U := U1 ∪ U2. Let R :M (U)→ R be given by

R(µ) =
∫

U

w(x ) d|µ|(x )

for a positive weight function w : U → R>0 that is bounded away from zero. Then for every µ ∈ M (U)
there exists a sequence {µn}∞n=1 ⊂M (U) such that µn

?
*µ inM (U) as n→ +∞ and R(µn)→R(µ).

Remark. This result appears as Problem 24(B) in Brezis [12]. The proof is based on a clever application of
the Hahn-Banach theorem. Alternatively, one can prove this directly using convolution of measures.

In light of the above proposition and Theorem 49 we deduce

Theorem 52. Let µγ ∈ H be a sequence of L2-functions minimizing
�

Pγrelaxed

�

with regularization parameter

γ. Similarly, let µ ∈M (UR) minimize
�

Prelaxed

�

. Then µγ
?
*µ inM (UR) as γ→ 0+.

Remark. Note that by elliptic regularity of the Laplace-Beltrami operator since µγ ∈ L2(M , dA) we have
uγ ∈ H2(M)∩H1

0(M) (or with other appropriate boundary conditions).

We briefly recall the gradient of the reduced energy in the regularized case: if we let ϕ be a solution
to the adjoint state equation ∆ϕ = wEu, where u= Sµ, then ∇eγ(µ) = −ϕ + γµ. We can summarize the
entire first order optimality system as follows:

Proposition 53. Let µγ ∈ L2(UR) denote the minimizer of
�

Pγrelaxed

�

. Let uγ denote the corresponding log-
conformal scale factors. Then there exists an adjoint state ϕγ ∈ C (UR) such that the following regularized
optimality system holds:











∆guγ = K −µγ,

∆gϕγ = wEuγ,

ϕγ − γµγ ∈ ∂R(µγ).

�

OSγcones

�

Using the specific structure of our optimization problem we can explicitly characterize the error
induced by the regularization. For simplicity, we consider UE = UR = M , wE = 1, and wR = λ > 0—
although these restrictions can be easily generalized without much work.

Proposition 54. The regularization error can be written as

o(γ)− o(0) =
1
2

∫ γ

0

‖µη‖
2
H dη

Proof. Since o is locally Lipschitz continuous it is locally absolutely continuous. Hence, by the funda-
mental theorem of calculus we see that

o(γ)− o(0) =

∫ γ

0

o′(η) dη.

By Proposition 47 we see that o′(η) = 1
2‖µη‖

2
H and so we obtain the desired result by substitution.

It seems likely that we can use Hölder bounds on the adjoint state to show that the above error
estimate is on the order of γθ for some 0 < θ < 1. Unfortunately, I found a mistake in my original
“proof” of this fact. A sketch of the argument is provided below:
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The following result is a straightforward application of the variational inequality characterizing the
minimizer and the definition of the proximal map—it will be shown explicitly in Chapter 5.

Proposition 55. For γ > 0 we have that

µγ =
1
γ

max
�

0,ϕγ −λ
�

+
1
γ

min
�

0,ϕγ +λ
�

,

where ϕγ is the corresponding optimal adjoint state.

Proposition 56. For γ > 0 we have that o(γ)− o(0)< γθ for some θ ∈ (0, 1).

Proof. This is only a sketch, with only one crucially missing component!

Let γ > 0. By Hölder’s inequality

‖µγ‖
2
L2(M) ≤ ‖µγ‖L1(M)‖‖µγ‖L∞(M).

Since ‖µγ‖L1(M) = ‖µγ‖M (M) where we use the adjoint embedding L2(M) ∼= L2(M)? ,→ M (M) to
identify µγ with the appropriate measure, we see that

‖µγ‖L1(M) ≤ o(γ)≤ E (SΩ(0)),

since R(0) = 0. So we see that

‖µγ‖
2
L2(M) ≤ c‖µγ‖L∞(M)

for some universal constant c > 0. Thus, using Proposition 54 we obtain the estimate

o(γ)− o(0) =
1
2

∫ γ

0

‖µη‖
2
L2(M) dη≤

c
2

∫ γ

0

‖µη‖L∞(M) dη.

So we see that we need an estimate of the form ‖µη‖L∞(M) ≤ cηβ for some β > −1. Using the el-
liptic regularity of the Laplace-Beltrami operator with measure-valued right hand sides we see that
‖uη‖W 1,p(M) ≤ c‖µη‖L1(M). Similarly, we conclude by using classical Lp-elliptic regularity and the Morrey
embedding ‖ϕη‖L∞ ≤ ‖ϕη‖W 3,p(M) ≤ ‖µη‖L1(M) ≤ c. So using Proposition 55 we see that

‖µη‖L∞(M) ≤
1
γ

�

‖ϕγ‖L∞(M) +λ
�

.

Notice that this estimate is too weak to give us a useful bound since 1
η is not integrable near η = 0.

This is exactly the estimate that still needs work to give us an appropriate error estimate—it seems likely
that one can use the fact that the Morrey embedding gives us an embedding into the Hölder spaces, and
then use an interpolation inequality relating the Hölder norm weighted L∞ and L1-norms.
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Chapter 5

Discretization

We will discuss the algorithmic realization of our optimal cones algorithm using the techniques pre-
sented in Chapter 4.

There are a number of ways to use the duality presented in Chapter 4 to obtain the optimal measure.
The first idea is to directly solve the primal problem since it is a standard quadratic program, and then
use the extremality conditions to recover the optimal measure. Numerical experiments (using MOSEK
to solve the primal quadratic program) recover the optimal scale factors within some reasonable error,
but we find in practice that recovering the optimal measure by computing ∆gu = Ω−µ induces some
serious numerical error which makes the recovery of the optimal cone angles and positions difficult.
This numerical instability arises from the extremely low-regularity of the optimal measure, i.e., the fact
that the minimizing measures tend to represent linear combinations of Dirac deltas.

The key insight from the optimal control community is that it is necessary to intertwine the dis-
cretization with the solution of the optimization problem to produce numerically stable efficient al-
gorithms. We use the techniques developed in [34, 64] to directly satisfy the first order optimality
conditions. The main challenge with this approach is to reformulate the subgradient inclusion from the
optimality system in a way that is suitable for numerical optimization.

5.1 Preliminaries

Our algorithm takes as input any manifold triangle mesh K = (V, E, F) with boundary B ⊂ V (pos-
sibly empty), and produces as output a set of cone vertices c1, . . . , ck ∈ V and associated cone angles
φ1, . . . ,φk. This data can then be used to compute a parameterization using existing algorithms; for
examples in this thesis we use boundary first flattening (BFF) [49] to compute the conformal parame-
terizations. The user must also provide a parameter λ > 0 which influences the number of cones (see
Sec. 6.1.1 for further discussion).

Discrete Laplacian We discretize the Laplace-Beltrami operator ∆ via the usual cotan operator [42],
represented as a matrix L ∈ R|V |×|V |. Let θ jk

i ∈ R denote the interior angle at vertex i of triangle i jk.
Then L has nonzero entries

Li j =

(

− 1
2

∑

i jk cotθ i j
k , i 6= j,

−
∑

il Lil , i = j,

where in the first case the sum is taken over triangles i jk containing edge i j, and in the second term
the sum is taken over edges il containing vertex i. This matrix effectively encodes zero Neumann
boundary conditions. We also build a diagonal (lumped) mass matrix M ∈ R|V |×|V | encoding the
barycentric dual areas:

Mii =
1
3

∑

i jk

Ai jk. (5.1)
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Here Ai jk is the area of triangle i jk, and we sum over triangles i jk containing vertex i.
To encode various boundary conditions, we partition the discrete Laplace-Beltrami matrix L into

blocks corresponding to interior vertices and boundary vertices, denoted by I and B, respectively:

L=

�

LI I LIB

LBI LBB

�

Note that LIB = L>BI since L is symmetric. In general, the Poisson equation ∆u = µ with Neumann
boundary conditions ∂ u

∂ n = ν on ∂M can be expressed as
�

LI I LIB

LBI LBB

��

uI

uB

�

+

�

0
v

�

=Mµ,

where vi and µi denotes the integrated value of ν and µ along the barycentric dual cell associated to
the vertex i ∈ V . Similarly, if we want to consider the Dirichlet boundary conditions u= b on ∂M then
we have

�

LI I LIB

LBI LBB

��

uI

b

�

=Mµ,

which can be rewritten as solving for uI :

LI IuI =MIµI − LIBb.

Discrete Curvature The integrated Gaussian curvature (i.e., the curvature 2-form) associated with an
interior vertex i ∈ V can be discretized via the usual angle defect

Ωi := 2π−
∑

i jk

θ
jk
i . (5.2)

These values are encoded in a column vector Ω ∈ R|V |. This definition is motivated since Ωi denotes
the deviation of the angle sum around i ∈ V from the angle sum around a planar triangulation (i.e.,
Ωi = 0.) One should crucially note that Ωi does not correspond to the pointwise Gaussian curvature,
but rather the integrated Gaussian curvature over a region around the vertex. Similarly, we can define
the discrete geodesic curvature 1-form along the boundary as

ki := π−
∑

i jk∈F

θ
jk
i .

5.2 Semismooth Newton Method

We now introduce the necessary optimization background to reformulate the optimality system as a
semismooth operator equation, and rely on the existing theory to reason about the convergence of the
employed method [64].

The main idea behind semismoothness is that the subgradient is not the appropriate generaliza-
tion of the differential to infinite dimensions, especially in the context of numerical optimization. We
mainly follow [63, 64], but we do not consider multi-valued differentials (which is reminiscent of the
subdifferential and more broadly of monotone operator theory) since it is both not useful to us from a
practical perspective, and since it complicates the notation.

Definition 57. Let X and Y be Banach spaces, and F : X → Y . Furthermore, let DF : X →L (X , Y ). The
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map F is DF -semismooth at x ∈ X if

lim
‖z‖X→0+

‖F(x + z)− F(x)− DF(x + z)[z]‖Y

‖z‖X
= 0.

DF is the semismooth differential of F at x .

This definition varies from the usual definition of the Fréchet differential since the candidate differ-
ential DF can vary as z→ 0.

Remark. A careful look at the definition of semismoothness above shows that every function F : X → Y is
semismooth differentiable with respect to some operator DF : X →L (X , Y ). That is for a given x ∈ X we
can simply define DFx by the relationship:

F(x + z)− F(x)− DFx(x + z)[z] = 0

for all z ∈ X (this corresponds to reaching x in a single Newton iteration). However, for this notion to be
useful algorithmically we must be able to compute DF a-priori, without knowledge of the point x.

We now reproduce the proof from Hintermüller et al. [32, Theorem 1.1] on the convergence of
Newton’s method for solving the semismooth operator equation F(x) = 0. The proof is both short and
instructive.

Theorem 58. Let F : X → Y , DF : X →L (X , Y ), and x ∈ X satisfy

• F(x) = 0,
• F is DF-semismooth at x,
• the semismooth differential DF is invertible in a neighborhood U of x (in X) with a uniform bound

‖DF(x)−1‖L (X ,Y ) ≤ C , for all x ∈ U .

Then there exists an open set V containing x such that for x0 ∈ V the Newton iterations defined by

xn+1 = xn − DF(xn)
−1F(xn)

converge to limn→+∞ xn = x. Furthermore, the convergence is superlinear in the sense that

‖xn+1 − xn‖X ≤ αn‖xn − x‖X

for a sequence {αn}∞n=1 ⊂ [0,+∞) satisfying αn→ 0 as n→ +∞.

Proof. By using the definition of the Newton iterations we obtain

xn+1 − x = −DF(xn)
−1 [F(xn)− F(x)− DF(xn)[xn − x]] .

Using the uniform bound on the operator norm of DF(xn)−1 we deduce

‖xn+1 − x‖X ≤ C‖F(xn)− F(x)− DF(xn)[xn − x]‖Y

for all xn ∈ x + U . Since F is DF -semismooth at x , we can take x0 close enough to x such that there
exists a 0≤ η < 1 satisfying

‖F(x)− F(x + z)− DF(x + z)[z]‖Y ≤
η

M
‖z‖X

for all z ∈ X with ‖z‖X ≤ ‖x0 − x‖X . It then follows that ‖x1 − x‖X ≤ η‖x0 − x‖X . By induction we
obtain ‖xn − x‖X ≤ ηn‖x0 − x‖X . Therefore, we have xn→ x as n→ +∞. The superlinear convergence
follows since we take η arbitrarily small by taking n larger and larger.
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We recall some basic properties of the semismooth differential.

Proposition 59. Let F : X → Y be C 1-Fréchet differentiable. Then F is dF-semismooth.

Proposition 60 (Chain rule, [64, Proposition 3.8]). Let U ⊂ X and V ⊂ Y be open. Let G : U → Y be
Lipschitz continuous near x ∈ U and DG-semismooth at x. Furthermore, let F : V → Z be DF-semismooth
at y = G(x) with DF being bounded near y. Let G(U) ⊂ V and consider the operator H = F ◦ G : U ⊂ X →
Z. Then H is DH-semismooth at x with

DH(z) = DF(G(z))) ◦ DG(z).

5.2.1 Semismooth Reformulation of the Regularized Optimality System

In light of the discussion on semismoothness in the previous section, an algorithm for computing the
minimizers of the original and regularized problems arises if we show that the optimality systems from
�

OScones

�

and
�

OSγcones

�

admit reformulations as semismooth operator equations. We will be able to
show that the regularized problem admits such a semismooth reformulation since it is framed over the
Hilbert space H = L2(M , dA). Similarly, we will be able to show that the finite-dimensional approxima-
tion of the original problem also admits a suitible formulation as a semismooth operator equation.

For notational simplicity we set UR = UE = M . The main difficulty in describing
�

OSγcones

�

as an
operator equation is in reformulating the relationship

−∇eγ(µ) ∈ ∂R(µ).

properly. We will show that this relationship admits a suitable reformulation using the proximal map.

Definition 61. Consider f : H → H be a convex function on the Hilbert space H. The proximal map of f ,
denoted Prox f : H → H, is given by

Prox f (h) := arg min
eh∈H

�

1
2







eh− h






2

H
+ f

�

eh
�

�

.

We will also write Proxγ := Prox f /γ when the function f is understood from context.

We now recall the following basic result relating to the proximal mapping.

Proposition 62. Let H be a Hilbert space, let f : H → H be a convex function, and let γ > 0. The map
Proxγ : H → H is a well-defined, bounded (nonlinear) operator. Furthermore,

µ= Proxγ(ϕ) ⇐⇒ γ(ϕ −µ) ∈ ∂ f (µ).

Now we explicitly characterize this subdifferential relationship using the adjoint state. Let µ ∈
L2(M , dA) and set u= SΩµ. The adjoint state ϕ ∈W 1,p′

0 (M) ,→C (M) solves ∆ϕ = wEu. Now using the
expression for the reduced gradient we see that

−∇eγ(µ) ∈ ∂R(µ) ⇐⇒ γ

�

1
γ
ϕ −µ

�

∈ ∂R(µ) ⇐⇒ µ= Proxγ

�

ϕ

γ

�

.

This allows us to replace the subdifferential inclusion by the equation above.
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For the regularized problem we consider the (semismooth) operator

Fγ : W 1,p
0 (M)×W 1,p′

0 (M)× L2(M , dA)→W 1,p
0 (M)

? ×W 1,p′

0 (M)? × L2(M , dA)

Fγ(u,ϕ,µ) :=





∆u−Ω−µ
∆ϕ −wEu

µ− Proxγ(ϕ/γ),





where the proximal map is associated to the regularization R . It is clear that regularized optimality
system is satisfied if and only if Fγ(u,ϕ,µ) = 0. Note that the state and adjoint equations are only
satisfied at the final iteration of the Newton method, and they are not satisfied during any other state
of the system.

Proposition 63. Consider R : L2(M , dA)→ R. Then

Proxγ(ϕ) =max
�

0,ϕ −
1
γ

wR

�

+min
�

0,ϕ +
1
γ

wR

�

,

where the max and min operators are taken pointwise almost-everywhere.

Proof. Recall that under the identification L2(M , dA) ,→M (M).

R(µ) =
∫

M

wR(x )|µ(x )| dA(x )

for µ ∈ L2(M , dA). To find µ= Proxγ(ϕ) we need to minimize the functional

µ 7→
∫

M

γ

2
|µ(x )−ϕ(x )|2 +wR(x )|µ(x )| dA(x ).

Clearly, it suffices to minimize the integrand pointwise (dA-almost everywhere). Fix x ∈ M . Minimiz-
ing the one-dimensional function

m 7→
γ

2
(m−ϕ(x ))2 +wR(x )|m|

gives rise to

m=

(

0 if |ϕ(x )| ≤ 1
γwR(x ),

ϕ(x )− 1
γ sgn(ϕ(x ))wR(x ) else.

So we conclude that

Proxγ(ϕ) =max
�

0,ϕ −
1
γ

wR

�

+min
�

0,ϕ +
1
γ

wR

�

,

where max and min operators are understood in a pointwise (dA-almost-everywhere) sense.

Since we know that µ= Proxγ(ϕ/γ) we can in fact reduce the optimality system for the regularized

problem even further to consider Fγ : W 1,p
0 (M) ×W 1,p′

0 (M) → W 1,p
0 (M)

? ×W 1,p′

0 (M)? (with a slight
overloading of notation)

Fγ(u,ϕ) =

�

∆u−Ω− Proxγ(ϕ/γ)
∆ϕ −wEu

�

It is important to note that Proxγ is semismooth differentiable as a map from L r(M)→ L2(M) for any
r > 2. Although this may initially seem problematic since the control µ ∈ L2(M), it is not since by
the elliptic regularity of the Laplacian and the Sobolev embedding theorems the gradient is a map
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∇e : L2(M)→ L r(M). Thus, the proximal map is semismooth differentiable (with respect to D Proxγ
described below) in the image of ∇e. A direct computation shows that

D Proxγ(ϕ/γ)[ψ] =

(

ψ(x )/γ if |ϕ(x )|> wR(x ),

0 else.

By a slight abuse of notation we write D Proxγ(ϕ/γ) =
1
γ1|ϕ|>wR since the application is understood as

pointwise multiplication of this characteristic function.
Using the chain rule we deduce that Fγ is semismooth differentiable with

DFγ(u,ϕ) =

�

∆ −D Proxγ(ϕ/γ)
−wE · ∆

�

=

�

∆ − 1
γ1|ϕ|>wR

−wE · ∆

�

,

where the application of DFγ(u,ϕ) on tangent vectors (v,ψ) is given through the notation of matrix
multiplication.

5.3 Algorithm

To numerically approximate solutions to the original and relaxed minimization problems we use the
standard approach of finite elements. We only briefly sketch the main ideas here since we exactly fol-
low the approach of Casas et al. [13]. We consider piecewise linear finite elements on the triangulated
surface K = (V, E, F) – the basis elements are the Whitney hat functions:

�

ϕi ∈ PL(K ;R) : i ∈ V, ϕi = 1,ϕ j = 0 for all j 6= i
	

.

Now we have the finite dimensional approximation of the space C (M) given by

CK :=

¨

∑

i∈V

ciϕi : ci ∈ R

«

.

Now we can define a finite dimensional space of measures as the dual of XK := C?K to obtain

XK :=

¨

µ=
∑

i∈V

µiδvi
: µi ∈ R

«

.

Note that the duality pairing between XK and CK coincides with the natural duality pairing given by
the inner product on R|V |. When we restrict the Laplace-Beltrami operator to this finite dimensional
subspace we obtain that the Laplace-Beltrami operator is replaced by the cotan-Laplacian L mentioned
in Sec. 5.1. Our optimization problems are now discretized in the straightforward way using these
finite elements.

Note that we only need to use this (slightly non-standard) conforming discretization of the space of
measuresM (M) in the final stage to actually recover the original cone singularities. By first solving the
sequence of regularized problems, which are framed over the Hilbert space L2(M), we are utilizing the
much more well-established finite-element method for solving partial differential equations. Furthermore,
attempts to directly solve the discretized optimization problem formulated over the space of measures
results in many of the same issues that arise in the L1-regularized optimization. Understanding exactly the
root of the differences between the L1-regularization and the measure-norm regularization in the discrete
setting is a most natural and important next step.

Notation. We will use sans-serif fonts u,p,µ ∈ R|V | to denote the discrete values corresponding to the
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smooth optimization variables u,ϕ,µ.

5.3.1 Semismooth Reformulation of the Discrete Optimality System

Since it will be important for implementation (and since the main ideas have been presented suc-
cinctly), we reintroduce the regions UE and UR in this section. We let R and E be the diagonal matrices
that indicate the domains UR and UE respectively. Similarly, WE := diag(wE ). Note that one can con-
sider µ ∈ R|UR |, in which case we use a matrix R ∈ R|V |×|UR | to extend a vector on UR to a vector on all
of V by simply placing zeros at vertices in V \ UR .

Since we already worked out the semismooth reformulation for the regularized optimization prob-
lem in the continuous setting, we begin by considering the optimality system of the discrete regularized
problems. In a manner that is completely parallel to the continuous derivation we deduce that for
γ > 0 the discrete optimality system reads











Lu= Ω−Rµ,

L>p= EMWEu,

µ= 1
γ Prox

�

R>p
�

.

(5.3)

Note that we can substitute the expression for µ into the first of these equations to obtain a system
involving only the variables u,p ∈ R|V |. As in the unregularized case, we can describe this system as an
equation Fγ(u,p) = 0 where Fγ : R2|V |→ R2|V | is given by

Fγ(u,p) :=





Lu−Ω+ 1
γR · Prox(R>p)

L>p−EMWEu



 . (5.4)

Note that this map is both nonlinear and nonsmooth due only to the proximal map. Compare this with
the semismooth operator equation formulated for the regularized optimization problem framed over
the original manifold,

�

OSγcones

�

.
Now we turn to the original relaxed optimization problem. By applying either Fenchel-Rockafellar

duality (or direct convex duality) to the discretized optimization we deduce that for the original prob-
lem the optimality system reads











Lu= Ω−Rµ,

L>p= EMWEu,

µ ∈ ∂ iλwR (R
>p),

(5.5)

Since R|V | is a Hilbert space, we will again be able to use the proximal map to characterize the
above subdifferential inclusion. Note that such a reformulation was not possible over the non-reflexive
Banach spaceM (M). Bauschke & Combettes [7] shows the following classical result regarding the the
relationship between the proximal map, the resolvant, and the subdifferential.

Definition 64. Let H be a Hilbert space, let A : H → 2H be a multi-valued operator, and let γ > 0. The
resolvant of A is defined to be

JA = (1 + A)−1.

The Yosida approximation of A of index γ is

γA=
1
γ

�

1 − JγA

�

.
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Proposition 65 (Bauschke & Combettes [7, Proposition 23.3]). Let A : H → 2H , γ > 0, x ∈ H, and p ∈ H.
Then the following hold:

(i) dom JγA = domγ A= range (1 + γA) and range JγA = dom A.
(ii) p ∈ JγA(x) ⇐⇒ x ∈ p+ γA(p) ⇐⇒ x − p ∈ γA(p).

(iii) p ∈γ A(x) ⇐⇒ p ∈ A(x − γp).

We will use this result where A = ∂ iλwR
: L2(M) → L2(M) is the subdifferential of the indicator,

which is a maximally monotone operator. It is not hard to see that

Jγ∂ f = Proxγ f

for any convex f : H → H and γ > 0. Now if we take f = iλwR then

Jγ∂ iλwR
= ProxγiλwR

= ProxiλwR
= ProjλwR ,

where ProjλwR is the projection onto the box constraints λwR . We can easily express this projection as:

ProjλwR (v) := v−max(0,v−λwR)−min(0,v+λwR).

Proposition 66. The relationship µ ∈ ∂ iλwR (q) is equivalent to, for all γ > 0,

q= ProjλwR

�

q+
µ

γ

�

.

Proof. By Proposition 65 (ii) we see that µ ∈ ∂ iλwR (q) is equivalent to, for all γ > 0,

q= Jγ∂ iλwR

�

q+
µ

γ

�

= ProjλwR

�

q+
µ

γ

�

.

Utilizing this and the subdifferential relationship from the discrete optimality system we see that for
all γ > 0

µ ∈ ∂ iλwR (R
>p) ⇐⇒ R>p= ProjiλwR

�

γ

�

1
γ
R>p+µ

��

.

Expanding this out, we conclude that µ ∈ ∂ iλwR (E
>p) is equivalent to

µ= γmax
�

0,E>p+
µ

γ
−λwR

�

+ γmin
�

0,E>p+
µ

γ
+λwR

�

for all γ > 0. In particular, this holds for γ= 1 and so we use this relationship

µ=max
�

0,E>p+µ−λwR
�

+min
�

0,E>p+µ+λwR
�

to encode the discrete optimality system in the operator F : R3|V |→ R3|V |

F(u,p,µ) :=











Lu−Ω−Eµ

L>p−RMwEu

µ− Proj
�

E>p+µ
�











. (5.6)

This is a valid reformulation since the optimality system holds if F(u,p,µ) = 0.
Now we compute the semismooth differentials. By considering the subgradient it is straightforward

to see that Proj is semismooth differentiable, with a semismooth differential given by the diagonal
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matrix

D Proj(x)ii := |xi |> λwRi
.

The analogou computations were provided for the smooth regularized problem. We will write D Proj(x) =
1|x|>λwR . Using this, and the fact that the rest of the operators in F and Fγ are linear, we obtain that

DFγ(u,p) :=





L 1
γR1|R>p|>λwR

−EMWE L>



 (5.7)

and

DF(u,p,µ) :=







L 0 R

−EMWE L> 0

0 1|R>p+µ|>λwR 1 −1|R>p|>λwR






(5.8)

In the above 0,1 ∈ R|V |×|V |. We again emphasize that these descriptions of the optimality system allow
us to easily apply a semismooth Newton method to solve the equation F(u,p,µ) = 0 and Fγ(u,p) = 0,
as described in Sec. 5.2.

5.3.2 Implementation

With everything in place we can describe the final algorithm which we implement. The basic idea
of the algorithm is to solve the first-order optimality conditions described in

�

OScones

�

. A standard
practice for our particular type of problem is to solve it in two stages:

• STAGE I — Solve a sequence of regularized problems that approach the exact problem.

• STAGE II — Use the solution to the final regularized problem to initialize a solve for the exact

solution.

We reiterate, the reason for solving a sequence of regularized problems first rather than directly
solving the exact problem is that the original problem has extremely low regularity solutions and so
without a good initialization the Newton method described can be unnercessarily slow and may not
even converge; indeed, in practice we find that solving the regularized problem first speeds up compu-
tation by about an order of magnitude. In terms of our original geometric problem, STAGE I produces
a sequence of sharper and sharper approximations of the optimal cone distribution (starting with a
highly “smoothed out” version); the second stage is then used to recover the exact cones.

5.3.3 Active Sets

Note that the semismooth differential depends on the subset of M where either the max and min opera-
tors in Proj are non-zero.

These regions are called the active sets. For the regularized problem determined by Fγ these read

A+ := {x ∈ M : p(x )> +λ} ,

A− := {x ∈ M : p(x )< −λ} .
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STAGE I

• u← 0 ∈ R|V |,p← 0 ∈ R|V |,γ← 1

• for γ= 100, . . . , 10−N ∼ 0:

– (u,p)← COMPUTEREGULARIZEDMEASURE(u,p,λ,γ)

STAGE II

• (u,p,µ)← COMPUTEOPTIMALMEASURE(u,p,λ)

Extract final cones from µ (Sec. 5.3.5)

COMPUTEREGULARIZEDMEASURE

• Until convergence (Sec. 5.3.4):

– Evaluate active sets (Eqn. 5.9)

– Evaluate residual bI := Fγ(u,p) (Eqn. 5.4)

– Evaluate differential UI := DFγ(u,p) (Eqn. 5.7)

– Solve UI[vT qT ]
T = −bI

– u← u+ v

– p← p+ q

COMPUTEOPTIMALMEASURE

• µ← ProjλwR (p)
• Until convergence (Sec. 5.3.4):

– Evaluate active sets (Eqn. 5.10)

– Evaluate residual bII := F(u,p,µ) (Eqn. 5.6)

– Evaluate differential UII := DF(u,p,µ) (Eqn. 5.8)

– Solve UII[vT qT νT ]
T = −bII

– u← u+ v

– p← p+ q

– µ← µ+ ν

Figure 5.1: Our algorithm boils down to solving a sequence of sparse linear equations, together with some simple closed-form
evaluations. In practice we use N = 10 for the largest regularization parameter.

Discretely, we consider the active sets A+,A− : V → {0,1}. We will represent these sets as |V | × |V |
diagonal matrices; in STAGE I, these matrices have nonzero entries

(A+I )ii := pi > +λ,
(A−I )ii := pi < −λ

(5.9)

for each vertex i ∈ V . Similarly, in STAGE II, where we also have variables µ ∈ R|V | the active sets are
given by

(A+II)ii := pi +µi > +λ,
(A−II)ii := pi +µi < −λ,

(5.10)
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i.e., the vertices i where |pi +µi |> λ. These sets are needed to check for convergence and to build our
update matrices, as described in Sections 5.3.1 and 5.3.4. In both stages, we will also define the matrix

A := A+ +A−. (5.11)

5.3.4 Convergence Criteria

Let (A+)k and (A−)k denote the two active sets at the kth iteration of Newton’s method (whether in
STAGE I or STAGE II). To check convergence, we simply check if either

(A+)k = (A+)k−1, and
(A−)k = (A−)k−1,

indicating that the active sets are no longer changing, or if the norm of the current residual b is below
a small tolerance ε > 0. An analysis of this stopping criteria is found in [32].

5.3.5 Extracting Cones

At the end of STAGE II we have a value µ at each vertex. To extract the final cones, we simply identify
the vertices ci ∈ V where µci

6= 0. Numerically, this is very easy to do since the values are extremely
stratified, i.e., they are either numerically zero (we use a tolerance of 10−12), or they are equal to the
cone angle φci

. Very rarely (e.g., only on extremely fine meshes) cones may appear in tiny clusters,
reflecting the fact that in the smooth setting one can always obtain slightly smaller area distortion by
replacing a Dirac measure at a point p with a measure supported on a tiny ring or region around p
(see Sec. 4.4). In practice we simply replace each edge-connected set of cones ci1 , . . . , cim with a single
cone of same total magnitude φi1 + · · ·+φim at the location of the Fréchet mean of thse points, cmean.
Our Wasserstein stability result shows that this rounding procedure cannot change the resulting area
distortion by more than a tiny amount related to the distance to cmean (Sec. 4.4). See Fig. 4.1 for one
example.

5.3.6 Multiresolution

Since the initial phase of STAGE I involves problems that are highly spatially regularized (i.e., when γ is
small), it makes little sense to solve these problems on a fine triangulation, where the scale of features
in the optimal solution will be much larger than the typical edge length. Moreover, since the solutions
to these problems are used only to initialize the next problem in the sequence, they do not need to be
solved with high spatial accuracy. In practice we therefore adopt a simple multiresolution strategy:
given our input mesh K we first construct a sequence of progressively finer meshes K1, . . . ,KM =K ,
where M is no greater than the number N of outer iterations used in STAGE I, and the number of tri-
angles in consecutive meshes is related by roughly the same constant factor s. The solution is then
transferred from coarse to fine as the value of γ increases (in practice, we use each mesh roughly the
same number of times). In particular, for each vertex i on a mesh Kl , we identify the set of vertices
on the next finest mesh Kl+1 that are closer to i than any other vertex in Kl . The values of ui and pi

are then equally distributed over these vertices. Note that one does not need to be particularly careful
about the number of meshes used, nor the method of coarsening. Since our problem is convex, we will
always find the same solution: the multiresolution strategy affects only the computational cost. In prac-
tice we use the Reduce functionality in MeshMixer [50], and use a constant s = 2. Fig. 5.2 shows one
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example, where we obtain a speedup of roughly 30x. Note however that the method is still quite effi-
cient even without this multiresolution strategy; most examples in this thesis were computed directly
on the fine input mesh.

Figure 5.2: Mesh hierarchy built on the Old Man Multires model; here we use only three levels. Compared to solving directly on
the full-resolution 30k triangle mesh, we obtain a speedup factor of about 23x (from 14.77s to about 0.62s). Colors indicate the
optimal regularized measure; in the final (fine) mesh the measure is exactly concentrated onto isolated vertices. Far right: The
resulting parameterization has only 32 cones, with a total angle of 18.86π.
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Chapter 6

Results

6.1 Validation and Comparisons

We implemented our algorithm in C++ using double precision for all calculations and the sparse QR
solver in SuiteSparse to solve linear systems. Timings were measured on a 2.6GHz Intel Core i5 laptop
with 8GB of RAM. In practice we need to solve about 50 to 100 linear systems, independent of the type
of geometry or the resolution of the model. The multiresolution strategy outlined in Sec. 5.3.6 reduces
the size of these systems substantially, though we did not find it essential for most of the examples in
this thesis: for models of about 100–150k triangles the algorithm takes at most about 20–25 seconds.
We did very little optimization of our code, and there are plenty of opportunities for acceleration both
at the level of linear algebra, and in terms of algorithms (as mentioned at the beginning of Sec. 5.3).

6.1.1 Tuning Parameter

The parameter λ ≥ 0 influences the number of cone singularities, or more precisely, the maximum
allowable total cone angle Φ =

∑

i |φi |. In particular, increasing λ decreases the total, and decreasing
λ increases it. A greater total cone angle will result in lower area distortion—however, for values of
λ that are too close to zero, cones will be placed everywhere. From basic scaling considerations and
practical experience, we find that a good range of values across a wide variety of examples at different
resolutions is 1

10 Area(K ) < λ < Area(K ) where Area(K ) is the total surface area (see Figures 6.2
and 6.1). For values below this range one typically starts to see cones densely distributed in regions
rather than at isolated points; above this range one tends to get no cones at all. In the region 0 <
λ < 1

10 Area(K ) there are some choices that lead to configurations of cone singularities supported on
curves. (See Fig. 6.1.)

Figure 6.1: The parameter λ controls the strength of the penalty on the total cone angle, and in turn, influences the number of
cones. For values above 1 (strong penalty) we tend to see that no cones are placed. For values very close to zero (weak penalty)
the curvature measure stops being sparse, and we get cones with small angles placed densely across regions or along curves
rather than at isolated points.
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Figure 6.2: The parameter λ has a very consistent behavior across different surfaces, typically producing a similar density of
cones (assuming area is normalized to 1).

6.1.2 Comparisons

We here compare the results of our method (MAD) to existing cone singularity placement strategies
introduced by Ben-Chen et al. [8] (CPMS) and Myles & Zorin [45] (GPIF). The basic cone placement
strategy from Springborn et al. [54] (CETM) is similar to CPMS, but we omit a comparison since their
strategy for picking angles is highly mesh dependent as discussed in Sec. 3.3. CPMS takes the target
number of cones as input, hence we sometimes show multiple examples. For GPIF we do not apply the
secondary rounding procedure (which is needed only the special case of integer grid maps), since it
would only yield greater area distortion. We also extensively tuned parameters in GPIF to achieve the
best possible results; we did not try to aim for computational efficiency.

Since one can always reduce area distortion by adding more cones, it is worth thinking about a
reasonable way to evaluate the relative “cost” of different cone configurations. One standard approach
is to measure the number of cones, though on its own this number can be misleading: for instance,
as cone angles approach zero they have little real effect on a flattening. Moreover, as suggested by
our stability analysis (Sec. 4.4) many small cones placed nearby can have a nearly identical effect to a
single large cone of equal total angle. In most examples we therefore report both the number of cones
n and the total cone angle Φ=

∑

i |φi |, as well as the resulting L2 area distortionA .
In some examples our algorithm places cone singularities in a similar fashion to existing techniques,

but typically using fewer cones or smaller total cone angle (Fig. 6.3, top). In other examples, we ob-
tain much lower area distortion, or alternatively, comparable distortion with far fewer cones (see for
instance Figures 1.2 and 6.4, and 6.3, bottom left). In Fig. 6.4, we also see that lines of singularities
(as sometimes placed by GPIF) do not necessarily yield lower area distortion than simply placing a
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Figure 6.3: More comparisons. On models with simple geometry (top row) greedy or region-growing strategies can work quite
well, though MAD still performs slightly better. On more challenging models such as the crab (bottom left) the gap typically
widens—note also the high degree of symmetry for MAD.
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Figure 6.4: Finding just the right configuration of cones and angles can sometimes dramatically reduce area distortion. Here,
MAD almost completely eliminates area distortion using just 8 cones (far right). Using the same number of cones in CPMS (far
left) yields far greater distortion; alternatively, one can drive the distortion to similar levels (center left) but using far more cones.
GPIF yields higher distortion than MAD, even after placing a whole ring of cones around the top of the head.

few carefully-selected cones. The same example shows that CPMS sometimes has a tendency to clus-
ter many cones in the same region, likely due to picking points near the center of a harmonic Green’s
function from a prior cone. Overall, we observed similar behavior to these examples across about 50
different meshes of varying geometry, mesh quality, and resolution; in no case did we ever find a con-
figuration with smaller area distortion than MAD for equal or smaller total angle Φ.

6.1.3 Robustness

One of the benefits of globally optimal algorithms is that they tend to provide reliable behavior across a
larger class of inputs. In Fig. 6.6, we observe that the cones chosen by method are really determined by
the geometry of the surface, and are not significantly perturbed by remeshing or common artifacts such
as noise, anisotropy, or poor (e.g., non-Delaunay) triangulation. Since we minimize an integral energy,
our method is also robust to large outliers, which contribute almost zero area Fig. 6.7. In constrast,
CPMS will start by placing a cone at every single outlier, since they have extremely large scale factors;
GPIF also puts cones at each of these outliers, since they are (by far) the points of greatest curvature.
Finally, Fig. 6.5 demonstrates that MAD produces consistent results whether one uses a uniform- or
variable-density mesh; in this example, the greedy placement strategy from CPMS is confounded by
the fact that harmonic Green’s functions will be better resolved—and hence larger—in finer regions, as
discussed in Sec. 3.3 (GPIF does not suffer from this same artifact).
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Figure 6.5: Variable density mesh. Left: CPMS places far more singularities in finely tessellated regions, where Green’s functions
are better resolved; note that many spheres overlap due to close clustering of cones. Center: GPIF also violates symmetry, and
achieves lower distortion than MAD only by using about twice as many cones. Right: MAD achieves low area distortion using a
symmetric arrangement of just a few cones, and with small total cone angle.

Figure 6.6: Our method produces consistent results on meshes of very different resolution (top row) and is also robust to mesh-
ing artifacts such as noise (bottom left), anisotropy (bottom center), and severely non-Delaunay elements (bottom right).

Figure 6.7: Stress test of robustness. Methods that place cones according to peaks in scale factors (left) or based on curvature
(center) may be confounded by outliers; here we consider an extreme case where near-invisible spikes are added to a mesh,
leading to cone configurations that are impossible to parameterize (bottom). Our method is generally not confounded by outliers
or noise, in this case ignoring the spikes and leading to a high-quality parameterization (right).
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6.2 Extensions

Our basic algorithm can also be extended in a variety of useful ways, as discussed in Sec. 3.5.

6.2.1 Nonuniform Importance

Figure 6.8: Left: cones placed according to standard L2 energy. Right: cones placed by re-weighting energy (and regularizer)
according to local feature size. Both cone configurations are globally optimal solutions to different problems.

As described in Sec. 3.5, we can augment our method to influence both (i) where cones are placed
and (ii) where distortion is measured. More specifically, one can either provide continous functions
wE ,wR : V → R>0 that act as a penalty on distortion and cone placement (resp.), or binary functions
UE , UR : V → {0,1} that explicitly excludes regions where distortion is measured and cones are placed
(resp.). The functions UE , UR can be particularly useful for reducing the problem size in cases where
there is only a small region of interest—an extreme example is when one wishes to place singularities
only along the boundary (see Sec. 6.2.3 for further discussion).

A key example where penalty functions are desirable is on meshes with features across very differ-
ent scales, such as the fingers and toes on a human body. In this case we first compute a local feature
size ri := 1/(|Ωi |/Mii + ε) at each vertex i ∈ V , where Ωi is the angle defect (Eqn. 5.2) and Mii is
the barycentric dual area (Eqn. 5.1); this value will be small in flat regions and large in highly curved
regions. We then set (wE )i := ri and (wR)i := 1/ri , emphasizing the importance of small features, and
decreasing the cost of placing cones in those same regions. An example is shown in Fig. 6.8.

An example where excluding a region is natural is when one wants to avoid placing cones in regions
that are visible from a particular point of view (Fig. 3.4); here we likewise need only penalize distor-
tion in the visible regions. Given a particular viewpoint, we set (UE )i to 1 and (UR)i to 0 if and only if
vertex i is visible.

Fixed Cone Points with Free Cone Angles In addition to automatically finding the entire configuration,
we can optionally allow the user to specify a collection of points p̂1, . . . , p̂m that must be included;
our method then optimizes the angles of these cones, and also finds the additional cones that best
minimize distortion. A critical place where this functionality is needed is finding cone configurations
on closed convex surfaces. Consider for instance the unit sphere where there is no reason to place
any negative cones—in this scenario, Gauss-Bonnet says that the total cone angle Φ :=

∑

i |φi | will
always be 4π. Hence our method will put a cone at every vertex i, with cone angle equal to the angle
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Figure 6.9: Left: When finally mapped to the plane a cone flattening of a surface (such as this brain) may have local noninjectiv-
ity at negative cones, unless these cones are cut into sufficiently small pieces (see zoom). Right: finding an optimal solution with
only positive cones avoids this source of local noninjectivity.

defect Ωi . A simple remedy is to put one “free” cone at an arbitrary vertex p̂ ∈ V (say, the vertex of
greatest curvature), which effectively behaves like a small puncture. Our method is now free to find
cone configurations where the sum of the cone angle magnitudes on the rest of the domain is strictly
less than 4π. In practice this strategy is rarely necessary, since most real-world surfaces have both
positive and negative curvature.

6.2.2 Bounded Cone Angles

Adding inequality constraints to our optimization (amounting to a simple projection at each iteration)
allows us to find optimal configurations with cone angles within a given range. For instance, negative
cones can lead to a flattening that is locally noninjective, since the total cone angle is greater than 2π.
We can avoid such features by simply requiring that φi > 0, helping to improve injectivity. In Fig. 6.9,
(right) we actually obtain a globally injective flattening, though of course in general one cannot expect
global injectivity purely from local injectivity. In one case, we allow a single free cone (as described in
Sec. 6.2.1). In another case, we simply optimize over all nonnegative cone configurations with total
angle 4π, without using including any kind of sparsity-inducing norm—amazingly enough, we still get
a sparse solution. Understanding the sparsity pattern of minimizing positive measures is an important
avenue for future research.
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optimal
quantization

optimal
(no quantization)

suboptimal
quantization

Figure 6.10: Left: in the absence of any bounds on cone angles φi ,
an optimal configuration for this model is to place eight equal cones
corresponding to an octahedron. Center: if we now limit angles to the
range φ ∈ [0,π/2], we get a configuration that has eight cones of
π/2 corresponding to a cuboid with unequal lengths. Right: the more
intuitive configuration with cones at cube corners yields higher area
distortion.

Another example where angle bounds
are potentially useful is in finding cone
configurations for seamless integer grid
maps [10], where cones must be quan-
tized to integer multiples of π/2. Al-
though we cannot produce optimal quan-
tized configurations, we find that restrict-
ing angles φi to the range [−π/2,π/2]
often yields a number of ±π/2 cones on
models that would otherwise have angles
outside this range. Fig. 6.10 shows one
example where all angles in the optimal
configuraton do happen to end up being
±π/2. Here we observe that the best way
to quantize a cone configuration is not al-
ways intuitively obvious, indicating there
may be significant room for improving
existing heuristics found in the meshing
literature. Incorporating actual quantiza-
tion into our framework is therefore an
interesting (and challenging) question for
future work.

6.2.3 Boundary Treatment

We can get interesting behavior by either
encouraging sparsity or bounding angles along the domain boundary, as discussed in Sec. 3.5. For
instance, encouraging sparsity of the boundary curvature leads to polygonal boundaries; forcing bound-
ary curvature to be positive leads to convex boundaries. We can also choose whether to jointly optimize
over cone and boundary configurations.
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Chapter 7

Discussion and Conclusions

This thesis focused on the problem of determining the optimal configuration of cone singularities for
minimizing the area distortion of the resulting conformal cone parameterization. In particular, we
formulated the optimal cones problem as a relaxed convex optimization problem with a sparsity in-
ducing regularization. By formulating the optimization problem over the space of finite signed Radon
measures we are able to obtain solutions that are supported on Riemannian measure zero sets, like
Dirac delta and 1-dimensional Hausdorff measures. By carefully studying a number of prototypical
examples from the optimal control community (specifically elliptic and parabolic optimization prob-
lems formulated over non-reflexive Banach spaces) we consider an abstract formulation which en-
capsulates the central features necessary for well-posedness and efficient numerical implementation.
Furthermore, the abstract formulation provided a simple framework to verify the correctness of the
formalization in the context of Riemannian manifolds—whereas the majority of the work in the opti-
mal control community is formulated over domains in RN . From the numerical perspective, we utilized
semismooth Newton methods due to their locally superlinear convergence and guarantees regarding
mesh-independence. The resulting algorithm is extremely simple to implement using basic tools from
numerical linear algebra and mesh processing.

Some of the limitations of our algorithm have already been carefully
addressed. For instance, although the continuous problem does not admit
exact Delta measures as solutions, we have provided a careful stability
analysis (Sec. 4.4) that leads to a practical rounding procedure in the
very rare case where cones appear in smaller clusters (Sec. 5.3.5). The
numerical experiments indicate that the measure norm regularization in
conjunction with both the L2-norm and the Yamabe equation is a power-
ful tool for inducing sparsity in optimization—it is important to note that
L1 or measure norms will do very little to promote sparse solutions if the
state equation and energy do not prefer such sparse solutions. Another
issue is that on surfaces like the unit sphere which have strictly positive
Gaussian curvature, the optimal solution to our problem is just the Gaus-
sian curvature measure itself, i.e., a cone at every vertex with angle given
by Gauss curvature (see inset, top). This measure yields minimial (zero)
area distortion, and by Gauss-Bonnet has minimal measure norm. A simple
and seemingly effective solution here is to just allow a single “free” cone
as described in Sec. 6.2.1 (see inset, bottom), though this ‘trick’ is rarely
required in practice. There is also some uncertainty in how to pick values
of λ, though in practice we find that the same values consistently produce similar results across a wide
variety of examples (Fig. 6.2). Perhaps the most interesting question is how to augment our formula-
tion to allow area distortion to be driven below a given user-specified threshold; here some significant
new ideas are likely required.
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More broadly, despite the importance of the cone flattening problem, very little is known not only
about finding optimal solutions, but even about basic questions regarding the behavior of cone flat-
tenings. For instance, there are many outstanding questions about the existence of cone metrics on
different topologies or with particular conditions on curvature [22, 23]. One might also wonder about
the geometric significance of optimal cone configurations, which might be better understood via con-
nections with optimal transport. From a practical point of view, a major open question is how to find
optimal cone configurations where angles are quantized (e.g., to integer multiples of π/2) which are a
critical component of structured surface remeshing. Finally, the question of how to optimally drive area
distortion below a user-specfied bound would enable one to compute high-quality flattenings that are
effectively indistinguishable from isometry. Another interesting path for future research is to consider
the optimization problem where the L2-energy is replaced by the Dirichlet energy. Since the Dirichlet
energy of the log-conformal scale factors is infinite in the presence of cone singularities, we should
expect that the minimizers are in fact curvature measures supported on curves. These measures sup-
ported on curves correspond to cutting the surface along these pieces. Preliminary experiments indicate
that this is the resulting behavior. The analytical perspectives introduced in this thesis may provide
new ways of looking at all of these problems.
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