
Eurographics Symposium on Geometry Processing 2025
M. Attene and S. Sellán
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 5

The Affine Heat Method

Yousuf Soliman1 and Nicholas Sharp2

1Side Effects Software, Canada
2NVIDIA, USA

Figure 1: Logarithmic Maps. The geodesic distance along a surface is central to many applications in computer graphics and machine
learning, however extracting directional information from it requires numerical differentiation that decreases regularity. The logarithmic map
instead encodes both direction and distance as a local parameterization about a point. Our Affine Heat Method computes the logarithmic
map from a source point directly by heat diffusion (left). The radial and angular components of the parameterization give estimates of the
geodesic distance (middle) and direction to any other point from the source (right).

Abstract
This work presents the Affine Heat Method for computing logarithmic maps. These maps are local surface parameterizations
defined by the direction and distance along shortest geodesic paths from a given source point, and arise in many geometric
tasks from local texture mapping to geodesic distance-based optimization. Our main insight is to define a connection Laplacian
with a homogeneous coordinate accounting for the translation between tangent coordinate frames; the action of short-time
heat flow under this Laplacian gives both the direction and distance from the source, along shortest geodesics. The resulting
numerical method is straightforward to implement, fast, and improves accuracy compared to past approaches. We present two
variants of the method, one of which enables pre-computation for fast repeated solves, while the other resolves the map even
near the cut locus in high detail. As with prior heat methods, our approach can be applied in any dimension and to any spatial
discretization, including polygonal meshes and point clouds, which we demonstrate along with applications of the method.

1. Introduction

The logarithmic map from a point p in a curved domain is a local
parameterization where all of the straight lines through the origin in
the parameterization trace out geodesics through p. Also known as
normal coordinates or geodesic polar coordinates, these are spe-

cial parameterizations, well-known in differential geometry, that
can dramatically simplify the analysis of geometric quantities, and
they have proven themselves a useful addition to the discrete geom-
etry processing toolbox. As these coordinates provide local param-
eterizations rooted at points on a surface (Fig. 1), they provide a
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straightforward interface to performing operations like surface de-
caling and sculpting [SGW06, SSC19, ML24].

A fundamental related concept is the notion of parallel transport
of tangent vectors, describing how to move a tangent vector along
a curve coherently as tangent spaces vary. This core operation is
utilized in a variety of computer graphics and machine learning ap-
plications [Sch13,BYF∗19,LDL∗22]. Recent work exploits the re-
lationship between parallel transport along shortest geodesics and
the vector heat equation for direction field synthesis [SSC19] and
generalized signed distance computations [FC24]. Both of these
algorithms are so-called heat methods [CWW13], which perform
geometric computations through the manipulation of solutions of
short-time heat diffusion. These prior works apply parallel trans-
port on the tangent bundle, which formalizes the intuitive notion
that adjacent tangent vectors are similar if they point in the same
direction and have the same magnitude—this is the most common
notion of parallel transport in geometry processing.

In this work we observe that a simple change to the notion
of parallel transport—introducing a homogeneous component to
encode translations in addition to rotations—yields a new heat
method which directly computes logarithmic maps. While past
work has computed logarithmic maps indirectly as a derived quan-
tity from heat flows [SSC19,HA19], we significantly improve accu-
racy and robustness by avoiding the need for imperfect, carefully-
constructed initial conditions or approximate derivatives. We call
this new approach the Affine Heat Method (AHM), since it utilizes
diffusion with respect to an affine connection . We present two algo-
rithmic variants: the first uses a single affine connection Laplacian
for all heat flows, and second constructs an adapted Laplacian with
respect to the source point, further increasing numerical accuracy
at the cost of additional computation.

Since our affine heat methods do not involve the integration
of vector fields, they are conceptually simpler than the approx-
imation of the logarithmic maps introduced in [SSC19, HA19].
More importantly, the parameterization quality of the local coor-
dinates are improved dramatically over the entire surface, espe-
cially near the source point, where the parameterizations produced
by of [SSC19, HA19] introduces local distortion (see Figs. 2, 6
and 26), and the cut locus where our method averages the pa-
rameterization directly (see Fig. 12). We demonstrate the utility of
our method on applications such as decaling (Fig. 17), UV flat-
tening (Fig. 18), and the computation of high-quality and smooth
stroke-aligned parameterizations (Fig. 19). While our logarithmic
map (from points) can be used as a drop-in replacement for the log-
arithmic parameterizations computed by previous work, our stroke-
aligned parameterizations make essential use of the affine diffusion
and cannot be computed by any existing heat method.

2. Related Work

Surface parameterization is a fundamental topic in computer graph-
ics and differential geometry that has garnered the attention of
many researchers due to its importance in, e.g., texturing work-
flows, surface registration, mesh generation, and manufacturing.
For our discussion, we coarsely categorize parameterization meth-
ods into two types: local parameterizations that provide a map from

Figure 2: Metric Distortion. Compared with prior methods
VHMlog [SSC19], SEM [HA19], and DEM [SGW06] (bottom row),
both variants of our affine heat method produce parameterizations
with dramatically less metric distortion (D) (Eqn. 18). We remark
that our parameterizations are isometric at the source, just as the
logarithmic map is in the smooth setting.

a Euclidean coordinate system to a local region around a specified
point, and global parameterizations that provide a map over the en-
tire geometry. Global parameterization methods typically minimize
a distortion energy subject to a variety of constraints on points
and seams [KLS03, SSC18, GKK∗24, AFSHA24]. Local parame-
terization methods, on the other hand, typically are unconstrained
and advance the parameterization incrementally along an expand-
ing wavefront. Note that past work in visual computing has used
the terms “logarithmic” and “exponential” map interchangeably,
in this text we will use the former. Schmidt and collaborators in-
troduced discrete exponential maps [SGW06, Sch13] (DEM) to
compute local parameterizations rooted at points or aligned with
strokes. While it produces accurate local approximations, the pa-
rameterization quality falls off quickly when geometric complexity
increases with distance. More recently, Madan and Levin [ML24]
approximate the local parameterization on any surface representa-
tion given by a signed implicit function and compatible projection
operator—their approach, also based on explicit radial tracing, pa-
rameterizes surface patches with geodesic splines.

The method we present lies somewhere in between local and
global methods: we also approximate the logarithmic map, but we
extend the parameterization globally to provide distance and direc-
tion from all points at once. In [CWW13], the heat method was
introduced for approximating geodesic distance from short-time
heat diffusion, and [BF15] extend a similar perspective as an iter-
ative scheme. In subsequent work, [SSC19] introduced the vector
heat method for approximating parallel transport of tangent vectors
along shortest geodesics via short-time vector diffusion. They also
utilized this operation to approximate surface logarithmic maps—
we call this approximation of the logarithmic map VHMlog. Unfor-
tunately, the parameterization quality is suboptimal in part due to
the inaccurate approximation of the radial vector field. In concur-
rent work, [HA19] also introduced a method for approximating the
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logarithmic map (SEM), computing the angular component of the
parameterization separately by diffusion from the source neighbor-
hood. The most recent incarnation of a heat method is the signed
heat method of [FC24] for computing generalized signed distance
functions to broken geometries.

3. Preliminaries

Our algorithm is best described using the language of vector bun-
dles, in both the smooth and discrete setting; here we briefly re-
view background and establish notation. We take care to prop-
erly formalize the algorithm in the smooth setting, but in practice
both versions of our algorithm are straightforward to implement by
assembling a Laplace-like matrix—the eager reader may proceed
to Alg. 1.

3.1. Euclidean Motions and Homogeneous Coordinates

We make use of a homogeneous coordinate to represent affine
transformations by linear ones. The subgroup of affine transforma-
tions we use to develop curves is the Lie group SE(n) of Euclidean
motions in Rn, with group multiplication given by composition.
Every element g ∈ SE(n) is of the form

g(x) = Ax+b

for some rotation matrix A ∈ SO(n) and some translation b ∈ Rn.
Using homogeneous coordinates, g can be represented as a (n+
1)× (n+1) matrix

g =

(
A b
0 1

)
so that g(x) = g( x

1). To simplify the notation, for a point x ∈ Rn,
we denote its lift into Rn+1 by [x] = ( x

1) ∈ Rn+1.

3.2. Discrete Surfaces

We also need basic notions about the geometry of triangle meshes.

Combinatorics By a discrete surface we mean a two-dimensional
orientable manifold simplicial complex K = (V,E ,F), possibly
with boundary. We denote oriented simplices by tuples of their ver-
tex indices.

Discrete Metric The geometry of a triangle mesh is commonly en-
coded by a 3D position associated with each vertex. In the discrete
setting, our algorithm actually depends only on weaker data: a dis-
crete metric, that is a choice of positive edge lengths ℓ : E → R>0
satisfying the triangle inequality on each face. In fact, this data is
equivalent to the choice of a piecewise constant Riemannian met-
ric in the faces that is compatible along the edges (see [KP16]).
From edge lengths, one can easily compute all relevant geometric
quantities like angle and area. Edge lengths are easily computed
from vertex positions in the common case, but this generality gains
us the ability to use intrinsic Delaunay triangulations for increased
robustness, if desired [SGC21].

Discrete Tangent Bundle We will use the in-
trinsic tangent spaces at the vertices as our dis-
crete tangent bundle. At each vertex i ∈ V , we
encode tangent vectors Xi ∈ TiK in local po-
lar coordinates (ri,ϕi) following [KCPS13]:
an arbitrary reference edge eij is chosen to
be the complex unit. The remaining edge vec-
tors are assigned polar coordinates by normalizing the angle sum
Θi = ∑i jk θ

i
jk to 2π—the angles between tangent vectors are taken

to be θ̃
i
km = 2πθ

i
km/Θi. These normalized angles and edge lengths

can be joined to provide coordinates of all of the outgoing edges.

Discrete Levi-Civita Connection The discrete Levi-Civita con-
nection is the map r∇

i j : TiK → TjK for each oriented edge
i j describing parallel transport between the tangent spaces.
The parallel transport is characterized by the property that
the tangent vector ei j ∈ TiK is sent to −e ji ∈ TjK.
So after choosing a coordinate system in
the tangent spaces, these vectors are repre-
sented by complex numbers and the parallel
transport is given by

r∇
i j :=−e ji/ei j. (1)

Discrete Vector Bundles To discretize the notion of affine vector
diffusion we need to consider more general vector bundles over the
vertices of a mesh. A discrete vector bundle of rank d is an assign-
ment of vector spaces Vi ∼= Rd for each vertex i ∈ V . A connection
∇ is represented by an assignment of linear maps r∇

i j : Vi → V j
for each oriented edge i j, satisfying r∇

ji ◦ r∇
i j = idVi . These maps

are interpreted as parallel transport maps between the fibers of the
bundle [LTGD16]. The discrete tangent bundle with the Levi-Civita
connection is the standard example of such a discrete vector bundle
endowed with a discrete connection.

Discrete Connection Laplacians Just as the cotan Laplacian is
the quadratic form associated to the Dirichlet energy

E(u) := ∑
i j∈E

wi j|dui j|2,

where dui j := u j −ui, we take the discrete connection Laplacian to
be the quadratic form associated to the vector Dirichlet energy

E
∇(X) := ∑

i j∈E
wi j|d∇Xi j|2, (2)

where d∇Xi j := X j − r∇
i j Xi. This definition works for any discrete

connection over a discrete vector bundle with fibers over the ver-
tices. The discrete connection Laplacian of a connection ∇0 over a
discrete vector bundle of rank d is a matrix L∇0 ∈ Rd|V|×d|V| that
can be built facewise by assembling for each triangle i jk ∈ F the
local 3d ×3d matrix (wi j +wki) idd −wi jr

∇0
i j −wkir

∇0
ik

−wi jr
∇0
ji (wi j +w jk) idd −w jkr∇0

jk
−wkir

∇0
ki −w jkr∇0

k j (w jk +wki) idd

 (3)

and accumulating the entries in L∇0 according to the triangle’s ver-
tex indices. In the case of the Levi-Civita connection, the parallel
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transport maps can be identified as multiplication by complex num-
bers allowing us to express the associated connection Laplacian as
a complex matrix L∇ ∈ C|V|×|V|. We will also need the diagonal
lumped mass matrix M to discretize the heat equation—it is ei-
ther real with size d|V|× d|V| in the case of L∇0 or complex with
|V|× |V| in the case of L∇.

3.3. The Vector Heat Method

The central idea of the vector heat method [SSC19] is that parallel
transport along minimal geodesics can be computed by short time
heat diffusion. The approach can be used to approximate parallel
transport in arbitrary vector bundles with a connection, but in all
cases it results in parallel transport along the shortest geodesics in
M. To precisely describe the setup and the asymptotic expansion
of the heat kernel upon which the algorithm is based, we need to
briefly review the notion of vector bundles and connections. We
refer the reader interested in a more complete introduction to the
theory of connections to [Jos08, Chap. 4].

Vector Bundles Smooth vector bundles, as opposed to their dis-
crete analogs, assign a family of vector spaces to every point on
a smooth manifold—for example, the tangent spaces at different
points can be joined together to form the tangent bundle. The vec-
tor bundle data is encoded in a smooth manifold E fibered over a
base manifold M, and we denote it by E → M and write Ex for the
vector subspace of E that projects down to a point x ∈ M. A choice
of a vector in each fiber is called a section of the bundle, and we
write ΓE for the space of all sections. For example, a section of the
tangent bundle is a vector field and Γ(T M) = X(M), and a section
of a trivial bundle Rk → M is a smooth function M → Rk.

Connections To differentiate a section σ ∈ Γ(E) along a tangent
direction X requires the choice of a connection to identify the
changing vector spaces. A connection ∇ on a vector bundle de-
scribes how to compute the directional (covariant) derivative ∇X σ

and gives rise to the notion of parallel transport by asking that the
directional derivative vanishes along a curve. In the case of the tan-
gent bundle on a Riemannian manifold, the Levi-Civita connec-
tion is the canonical choice. Similarly, there is a natural connection

Figure 3: Vector Bundles with Connection. A diagrammatic rep-
resentation of a trivial vector bundle E = R2 over a curve γ in
M. The yellow vector field is a parallel section with respect to the
trivial connection, while the black vector field is a parallel section
with respect to the connection ∇ = d − α with matrix-valued 1-
form α(γ′) =

( 0 1
−1 0

)
. This infinitesimal rotation introduces a twist

into the identification of neighboring tangent spaces.

Figure 4: Boundary Behavior. Since the approximation of parallel
transport obtained from the short time asymptotics of the heat ker-
nel is not strongly influenced by the presence of a boundary, both
our method (left) and the signed heat method of [FC24] (right) re-
alize the correct boundary behavior for geodesic distance.

on any trivial bundle: the directional derivative (i.e., the exterior
derivative).

However, these are not the only meaningful connections. Any
other connection ∇ on a trivial bundle Rk → M is of the form

∇X f = dX f −α(X) f ,

for some matrix-valued 1-form α ∈ Ω
1(M;Rk×k), and we write

∇ = d −α to denote this connection [Jos08]. In the general case,
the space of connections is an affine space and the difference be-
tween two connection is given by an endomorphism valued 1-form
α ∈ Ω

1(M;EndE). The matrix-valued 1-form α has a geometric
interpretation: it describes how a basis needs to change to remain
parallel (Fig. 3). It is often useful to restrict the α to take values in
a subgroup of all matrices (e.g., infinitesimal rotations) so that the
parallel transport preserves certain geometric properties. For ex-
ample, integrating the rotation-valued connection in Fig. 3 between
successive points produces a rotation-valued parallel transport map
(i.e., a discrete metric connection). We will use these representa-
tions with α taking values in the space of Euclidean transformations
in the description of our algorithm in Sec. 4.2.

Vector Diffusion Heat diffusion is naturally described as the gra-
dient flow of the Dirichlet energy of temperature, and this inter-
pretation generalizes to the vectorial setting as well. For a section
σ ∈ Γ(E), we can define the vector Dirichlet energy (cf. , Eqn. 2)

E
∇(σ) = 1

2

∫
M
|∇σ|2,

where the integral is with respect to the Riemannian volume form.
Its L2-gradient flow is the vector heat equation

(∂t −∆
∇)σt = 0,

where ∆
∇ is the connection Laplacian associated to ∇. Intuitively,

this evolution smears the initial vectorial distribution, and the
precise behavior can be understood by studying the heat kernel
k∇t (x,y) : Ex → Ey, which describes the simpler picture of how a
single vector at a x diffuses to y in some time t. Short time asymp-
totics of the heat kernel reveal a deep relationship to parallel trans-
port along shortest geodesics that can be used for geometric compu-
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tation. [BGV92, Theorem 2.30] states that the magnitude of a vec-
tor falls off exponentially like (4πt)−n/2e−d(x,y)2/4t , exactly as for
the scalar heat equation, and the leading order term of the asymp-
totic expansion is equal to the parallel transport Px→y : Ex → Ey
along the unique geodesic connection x and y.

In practice, this means that we can approximate the parallel
transport of a vector rooted at x along all geodesics emanating from
x by normalizing the solution of a short time heat equation. This
approximation algorithm is what we call the vector heat method,
irrespective of the choice of base space, vector bundle, or connec-
tion. We remark that using Neumann boundary conditions with the
vector heat method reproduces the correct boundary behavior of
parallel transport along minimal geodesics (Fig. 4).

Time Discretization We follow the same approach of past heat
methods [CWW13,SSC19,FC24] to obtaining a semidiscrete algo-
rithm: apply a single step of a backward Euler approximation of the
heat equation. Solutions of connection Laplacian based heat equa-
tions at small time t = τ are approximated by the linear equation

(id−τ∆
∇)στ = σ0, (4)

where σ0 is the initial condition used to start the diffusion†.

3.4. Exponential and Logarithmic Maps

The exponential map on a Riemannian manifold (M,g) at a point
p ∈ M is a map expp : TpM → M defined by following a geodesic
from p for a unit time along a specified tangent direction. The log-
arithmic map is the inverse of this map‡

logp : M → TpM,

that describes for any point q ∈ M what tangent direction X ∈ TpM
do we need to follow to reach q. The logarithmic map is technically
a map into the tangent space, but we can turn it into a parameteri-
zation after choosing any basis in TpM.

† σ0 only needs to have the regularity of a vector-valued measure for the
equation to make sense—we consider initial conditions given by Hausdorff
measures supported on points and curves
‡ Technically, the logarithmic map is only defined on the subset of M where
the exponential map is a diffeomorphism.

3.5. Visualizing Logarithmic Maps

Surface parameterizations in computer graphics are often visual-
ized using a checkerboard pattern induced by a Cartesian coordi-
nate system. However, since logarithmic maps describe distance
and direction information to a source point, we find it more ap-
propriate to visualize the parameterization using a checkerboard
pattern induced by polar coordinates instead, which we will use
throughout the paper (unless otherwise noted). This choice breaks
the translational symmetry of the checkerboard pattern, revealing
the location of the source point along with the measure of distance
and direction back to the source. Even when using the analytical ex-
pression for the logarithmic map on the sphere (Fig. 5), the Carte-
sian checkerboard pattern looks highly distorted—the clover-esque
distortion near the antipodal point is an artifact that can be under-
stood by imagining pulling the four corners of a square to a single
point.

Figure 5: Spherical Polar Coordinates. Using a Cartesian
checkerboard pattern (right) to visualize the exact logarithmic map
on the sphere results in highly distorted textures and artifacts unre-
lated to the parameterization. Using a polar checkerboard pattern
instead (left) better visualizes the geometric information encoded
in these local parameterizations.

4. The Affine Heat Methods

We now describe two closely related heat methods for comput-
ing logarithmic maps on curved domains. Both methods use a no-
tion of affine parallel transport to obtain the logarithmic map di-
rectly through diffusion. The localized variant (Sec. 4.1) will pro-
duce a radial vector field that approximates the gradient of geodesic
distance—measured in a geodesic frame, this radial field is equal to
the logarithmic map. Turning to the adaptive variant (Sec. 4.2), we
use the same geodesic frame to instead build a diffusion operator
adapted to the source point—the corresponding radial field will be
the logarithmic map itself. Sec. 6 discusses the practical tradeoffs
between these methods; in short both are fast and more accurate
than prior approaches, but the localized variant allows prefactor-
ization for fast repeated solves, while the adaptive variant further
improves numerical accuracy.

Throughout this section, we will consider an n-dimensional Rie-
mannian manifold M with metric g and fix a point p ∈ M about
which we will construct our logarithmic maps. So that we may fo-
cus on the essential geometric picture, we further assume that for
every point q ∈ M there is a unique geodesic from p to q. To keep
the discrete picture concrete, we only consider two-dimensional tri-
angle meshes K = (V,E ,F) until Sec. 4.3.
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Figure 6: A Flat Comparison. Computing logarithmic maps using
the vector heat method approach introduced in [SSC19] results in
a large amount of distortion near the source point (bottom row);
both versions our affine heat method result in much more accurate
parameterizations, in the Euclidean case reproducing the ground
truth (top row).

Parameterizing Euclidean Space Before presenting the general
algorithm on curved domains, we start in the Euclidean setting
where the essential feature of our method can already be explained.
The goal is to construct a connection ∇ that encodes the loga-
rithmic map in Rn through parallel transport along straight lines
through a point. While the resulting parameterization will be the
trivial one, i.e., the identity map x ∈ Rn 7→ x, our construction gen-
eralizes naturally to any curved manifold where no trivial parame-
terization exists.

Given a curve γ and a map x : Rn → Rn we want to encode

dγ′x = γ
′ (5)

as the condition that x is a parallel section along γ of some connec-
tion. This would imply that we could compute the parameteriza-
tion x by the corresponding parallel transport along the geodesics
(straight lines) through a point. However, if we only consider con-
nections ∇ = d − α on the trivial bundle Rn → Rn the parallel
sections along a curve γ will satisfy the differential equation

dγ′x = α(γ′)x.

It is impossible to express Eqn. 5 in this way since α(γ′) acts lin-
early on x. The crucial observation motivating the introduction of
a homogeneous coordinate is that we can use a translation to re-
solve this if we allow ourselves to work with more general affine
transformations of the form x 7→ α(γ′)x+β(γ′).

On the trivial bundle Rn+1 → Rn we consider the connection

∇ := d −
(

0 id
0 0

)
. (6)

Here, we treat the identity map as the 1-form id ∈ Ω
1(Rn;Rn) de-

fined by id(X) = X . The matrix-valued 1-form we add to d de-

Figure 7: Affine Parallel Transport. Using translations in the
identification of neighboring tangent spaces via a connection can
be used to integrate arbitrary curves in the base space isometrically
in the fibers.

scribes an infinitesimal translation (with no rotation) in the direc-
tion being differentiated (Fig. 7). Using that a section is a map
(x,λ) : Rn → Rn+1, we can verify that ∇ encodes Eqn. 5 by com-
puting the ∇-covariant directive along a curve γ:

∇γ′

(
x
λ

)
= dγ′

(
x
λ

)
−
(

0 γ
′

0 0

)(
x
λ

)
=

(
dγ′x−λγ

′

dγ′λ

)
.

If (x,λ) is parallel along a curve γ then ∇γ′
( x

λ

)
= 0 and so

dγ′x = λγ
′, dγ′λ = 0.

The second equation implies that the homogeneous parameter must
be constant along γ. Therefore, since λ is constant, the first equa-
tion can be explicitly integrated to obtain that x = λγ + x0 with
some integration constant x0 ∈ Rn. Dividing out the homogeneous
coordinate, we see that if (x,λ) is parallel along γ then it describes
a translate of γ in Rn.

We can now conclude that if x(0) = 0 and λ(0) = 1 and (x,λ) is
parallel along all geodesics through the origin then(

x(x)
λ(x)

)
=

(
x
1

)
for all x ∈ Rn. We approximate the parallel transport along all of
these geodesics using the vector heat method—in particular, after
dividing out the homogeneous coordinate of a short-time affine heat
diffusion we obtain the trivial parameterization of Euclidean space
centered around the origin. Both the localized and adaptive vari-
ants of the affine heat method will reduce to the picture we just de-
scribed when the underlying manifold is Euclidean space. Remark-
ably, even in the discrete our method reproduces the exact solution
on Euclidean domains, up to floating point precision. See Rem. 2.
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Figure 8: Gallery. Within the injectivity radius, the parameterization from the localized affine heat method (φℓ) is nearly indistinguishable to
the more accurate results provided by the adaptive affine heat method (φa). We normalize the surfaces so that the maximum of the geodesic
distance to the source is equal to 1. Even near the cut locus, where the ground truth is ill-defined, AHM produces a continuous approximation
of the angular component of the parameterization. Visualized with Cartesian checkerboards.

4.1. The Localized Affine Heat Method

The Localized Affine Heat Method (AHMℓ) follows an approach
similar to VHMlog: to construct the angular component of the
parameterization we measure the angle between a “radial field”
and a “horizontal field” (Fig. 9). The former being tangent to all
geodesics from the source, while the latter making a constant an-
gle with each such geodesic. Ensuring that the angular and distance
components of the parameterization, computed separately, are com-
patible and produce a low-distortion map is difficult in practice. We
instead propose to compute a radial field whose length is equal to
the geodesic distance (i.e., half the gradient of geodesic distance
squared). With our homogeneous connection, we can use short-
time heat flow to easily and accurately compute this quantity via
parallel transport along shortest geodesics. Below, we start in the
smooth setting, before discretizing AHMℓ.

Smooth Picture To compute the radial field, we take inspiration
from the Euclidean setting and consider the connection ∇ℓ on the
vector bundle T M⊕R with block-decomposition

∇ℓ =

(
∇ 0
0 d

)
−
(

0 id
0 0

)
,

where id ∈ Ω
1(M;T M) is the tautological 1-form defined

by id(X) = X . Our choice of connection ensures that
parallel transport of the zero vector (0,1) ∈ TpM ⊕ R,
in the tangent space of the source p, along geodesics
through p produces the radial vector field 1

2 grad(d2
p):

Lemma 1 Suppose that (Y,λ) ∈ Γ(T M ⊕
R) satisfies Yp = 0 ∈ TpM and λp = 1
and that (Y,λ) is ∇ℓ-parallel along all
geodesics through p. Then for any such
geodesic γ through p we have that Y =

dp(γ)
γ
′

|γ′| and λ ≡ 1.

Proof Consider a unit-speed parameter-
ized geodesic γ(t) satisfying γ(0) = p.
Since (Y,λ) is parallel along γ we have
that

∇ℓ
γ′

(
Y
λ

)
=

(
∇γ′Y
dγ′λ

)
−
(

0 γ
′

0 0

)(
Y
λ

)
=

(
∇γ′Y −λγ

′

dγ′λ

)
= 0.

The second equation implies that λ is constant along γ, and so λ|γ ≡
1. The first equation then implies that ∇γ′Y = γ

′. Letting n be any
parallel section along γ that is orthogonal to γ

′ we have

⟨Y,n⟩′ = ⟨∇γ′Y,n⟩+ ⟨Y,∇γ′n⟩= 0

since the Levi-Civita connection ∇ is a metric connection. The first
term vanishes since ⟨∇γ′Y,n⟩ = ⟨γ′,n⟩ and n is orthogonal to γ

′,
while the second term vanishes since n is parallel. This implies that
Y = Lγ

′. To determine the length, we compute

⟨Y,Y ⟩′ = 2⟨∇γ′Y,Y ⟩= 2⟨γ′,Lγ
′⟩= 2L

since |γ′|= 1. This implies that (L2)′ = 2L′ = 2L and so L′(t) = 1.
Since L(0) = 0 we deduce that L(t) = t = dp(γ(t)) and the result
follows.
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Since the angle between parallel vector fields along a curve is
constant, we can compute the logarithmic map x : M → Rn by
measuring the coordinates of the radial field Y in a geodesic frame
E1, . . . ,En adapted to p (App. A).

x(p) = (⟨Ei(p),Yp⟩)n
i=1. (7)

For future reference, we define the identification induced by Ei as

Φ : T M → Rn, X ∈ TpM 7→ (⟨Ei(p),X⟩)n
i=1, (8)

so that x(p) = Φ(Yp).

Figure 9: Localized Variant Overview. The three steps of the lo-
calized affine heat method.

Discrete Radial Field We discretize the bundle T M ⊕ R by
TK⊕R by adding a homogeneous coordinate to the vertex tan-
gent spaces. In the discrete setting we can also understand the
computation of the affine parallel transport corresponding to ∇ℓ

directly. The per-edge entries of the Laplacian matrix encode
a notion of similarity between values at adjacent vertices: in a
scalar Laplacian, values across an edge ij are considered simi-
lar when they are identical, while in a tangent vector connec-
tion Laplacian they are considered similar if they are equal af-
ter aligning the tangent spaces by a rotation r∇

ij (Eqn. 1).
Here we go one step further to
discretize ∇ℓ and build an op-
erator that treats values as simi-
lar after a rotation and a transla-
tion between neighboring tangent
spaces; similarity is defined after
aligning the tangent spaces with
the local Euclidean transformation:

r∇ℓ

ij : TiK→ TjK, r∇ℓ

ij (Xi) = r∇
ij Xi + e ji, (9)

where e ji ∈ TjK is the edge vector. To build the corresponding con-
nection Laplacian we need to represent these affine transformations
by linear maps using a real homogeneous coordinate:

r∇ℓ

ij =

[
r∇
ij e ji
0 1

]
∈ R3×3,

which is an approximation of the parallel transport with respect to

ALGORITHM 1: The Localized Affine Heat Method
Input: A source point p with a unit vector Up ∈ TpK
Output: A parameterization φ : V → R2.
1. Solve the affine diffusion equation (M+ τL∇

ℓ
)
(
Y
λ

)
=

(
0
1

)
δp (Eqn. 10).

2. Solve the tangent diffusion equation (M+ τL∇)Ũ = Upδp (Eqn. 11).
3. Evaluate the parameterization φv := Φ(Y/λ) (Eqn. 12).

∇ℓ along the edge ij. Since the discretization of the ∇ℓ connection
is given by matrices in SE(2), the discrete ∇ℓ connection Lapla-
cian is a real matrix L∇

ℓ

∈ R3|V|×3|V|. To approximate the radial
field, we apply the vector heat method and diffuse the zero vector
supported at a single source point p by solving

(M+ τL∇
ℓ

)

(
Y
λ

)
=

(
0
1

)
δp (10)

for Y : V → TK and λ : V →R. We obtain the radial field by divid-
ing out the homogeneous coordinate. We choose the short time τ to
be proportional to the mean edge-length squared (see Sec. 4.3).

Discrete Geodesic Frame To obtain the final parameterization, we
need to measure the coordinates of the radial field with respect to
a geodesic frame adapted to p. As opposed to the arbitrary iden-
tification of the tangent spaces induced by choosing an arbitrary
edge as the complex unit, the identification induced by a geodesic
frame provides a consistent way to orient the tangent spaces rela-
tive to p (Fig. 10). We approximate the adapted geodesic using the
vector heat method with respect to the Levi-Civita connection (cf.
[SSC19]): diffuse and normalize a tangent vector Up ∈ TpK to ex-
tend it to a discrete vector field U. Denoting the discrete tangent
connection Laplacian L∇ ∈ C|V|×|V|, the discrete geodesic frame
is obtained by normalizing the solution of

(M+ τL∇)Ũ= Upδp. (11)

The coordinates induced by Ui := Ũi/|Ũi| defines an identifica-
tion Φi : TiK→ C adapted to the point p:

Φi(X) := X/Ui = (⟨X ,Ui⟩,⟨X , ιUi⟩), (12)

in the second equation we denote the imaginary unit ι and the real
inner products ⟨·, ·⟩. Following the smooth theory (Eqn. 7), we ob-
tain the logarithmic map of p by evaluating the coordinates of ra-
dial field using Φ. A concise overview of the algorithm is given
in Alg. 1.

Remark 1 Rather than also building and factoring the Levi-Civita
connection Laplacian, we can exploit the fact that the upper left
component of r∇ℓ

ij is the r∇
ij —setting the homogeneous coordinate

to zero, solving

(M+ τL∇
ℓ

)

(
Ũ
0

)
=

(
Up δp

0

)
, (13)

is equivalent to Eqn. 11.

4.2. The Adaptive Affine Heat Method

We now present the Adaptive Affine Heat Method (AHMa) that uses
the geodesic frame in the construction of the connection itself to
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Figure 10: Tangent Space Coordinates. Left: the identification
given by choosing an arbitrary reference edge is useful for encod-
ing tangent vectors numerically, but has no geometric significance.
Right: a vector field obtained by the vector heat method induces
a consistent orientation of the tangent spaces with respect to the
frame at p.

identify the tangent spaces with a fixed Euclidean space. The anal-
ogous construction of the radial field will produce the logarithmic
map directly. Intuitively, this adaptive variant provides additional
benefits in highly distorted regions since it averages the parameter-
ization values directly.

Figure 11: Overview. The two steps of the adaptive affine heat
method. After each diffusion, the resulting quantity is normalized
to produce either a unit direction field or point in R2.

Smooth Picture Exactly as in the Euclidean case, we work with
the trivial bundle Rn+1 → M, but instead we consider a connection
that determines the translation in an adapted geodesic frame:

∇Φ := d −
(

0 Φ◦ id
0 0

)
, (14)

where Φ : T M → Rn is the geodesic frame obtained by parallel
transport (Eqn. 8). Now consider a unit speed geodesic curve γ em-
anating from p and a section (x,λ) : M →Rn+1 that is ∇Φ

-parallel
along γ. Just as in the Euclidean and localized cases, the homoge-
neous coordinate is constant along γ. Thus, without loss of gener-
ality, we can assume that λ ≡ 1. Since (x,λ) satisfies the ordinary
differential equation

dγ′x = Φ(γ′)

along γ, and since Φ(γ′) is constant (App. A), we conclude that x|γ
is a straight line. Since this characterizes the logarithmic map, we
have shown that the logarithmic map can also be computed by ∇Φ

-

Figure 12: Colliding Geodesics. Surface logarithmic maps are
only well defined within the injectivity radius of the source point,
where geodesics are guaranteed to never collide. Nevertheless, we
produce smooth polar coordinates globally, even near the cut locus,
rooted at points with extremely small injectivity radius.

ALGORITHM 2: The Adaptive Affine Heat Method

Input: A source point p with a unit vector Up ∈ TpK
Output: A parameterization φ : V → R2.
1. Solve the tangent diffusion equation (M+ τL∇)Ũ = U0. (Eqn. 11)
2. Solve the affine diffusion equation (M+ τL∇)( x

λ
) =

(
0
1

)
δp. (Eqn. 16)

3. Evaluate the parameterization φv := xv/λv. (Eqn. 17)

parallel transport of the initial condition [0] along the geodesics
emanating from p:

Lemma 2 Suppose that (x,λ) : M → Rn+1 satisfies xp = 0 and

λp = 1 and that (x,λ) is ∇Φ
-parallel along all geodesics through p.

Then x(x) = Φ(logp(x)).

We will suppress the dependence of ∇ on Φ since the identification
will always be clear from context. Now that we have constructed
the connection ∇, encoding the logarithmic map in its parallel sec-
tions, we can simply apply the vector heat method to compute a
parameterization of our domain rooted at p ∈ M. Since we also
need to compute the identification Φ, the adaptive variation of our
algorithm consists of two applications of the vector heat method
(Fig. 11).

Discrete ∇ The discretization of the ∇ connection (Eqn. 14) is
a linear map between the fibers of the trivial R3-bundle over the
vertices r∇

i j : R3
i → R3

j that describes the parallel transport with
respect to ∇. Since ∇ describes an infinitesimal translation in the
direction that is being differentiated (after being identified with R2

using Φ computed from the result of Eqn. 11), the discrete parallel
transport is given by the finite translation in the direction being
differentiated—in this case, in the edge direction ei j. As a matrix,
we take

r∇
i j :=

(
id Φi(ei j)
0 1

)
(15)
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This discrete connection has the property that the development of
any edge path is isometric, exactly as in the smooth setting. To
approximate the logarithmic map, we now apply the vector heat
method and diffuse the zero vector supported at a single point p
and solve the discrete affine diffusion equation (cf. Eqn. 10):

(M+ τL∇)

(
x
λ

)
=

(
0
1

)
δp. (16)

The parameterization values φ : V → R2 are obtained by normaliz-
ing the homogeneous coordinate:

φv := xv/λv. (17)

This procedure is summarized in Alg. 2.

h2

1000
h2

100 h2 100h2 1000h2

Figure 13: Very Short and Long Time Diffusion. Compared to the
method from [SSC19] (top), our affine heat method (bottom) pro-
vides accurate estimates of the log map across orders of magnitude
of the time step used to estimate the heat kernels.

Remark 2 On a planar triangle mesh Φ can be taken to be the
identity map and so the affine parallel transport (Eqn. 15) has no
curvature: for any closed loop of edges the parallel transport around
it is given by the translation by the sum of the edge vectors, and this
sum vanishes because the loop is closed. The absence of curvature
implies that the corresponding affine heat diffusion is essentially
the same as scalar diffusion (see App. B). We point out that, in this
case, we can change the coordinates of the vertex tangent spaces so
that discrete Levi-Civita connection is the identity and the localized
variant is transformed into the adaptive one.

4.3. Details and Generalizations

Short Time Since our discrete algorithms amount to solving
sparse linear systems representing short time heat diffusion, we
need to choose an appropriate time step τ > 0. Following work

on prior heat methods [CWW13, SSC19], we let τ = h2 where h
is the mean edge length. This ensures that the resulting algorithm is
scale invariant. The improved robustness of the Affine Heat Method
extends to the choice of τ: unlike VHMlog, it produces reasonable
parameterizations across a large range of time steps used to approx-
imate the heat kernel (see Fig. 13).

Source Discretization We discretize the right hand side of the
time-discrete heat equations with values (U0)v ∈C and (µ0)v ∈R3

at vertices v ∈ V . We first consider the situation when the source
point coincides with a mesh vertex i ∈ V , and we take

(U0)v =

{
Up ∈ TpM if v = i,
0 otherwise,

and

(µ0)v =

{
[0] if v = i,
0 otherwise.

When the source point lies inside a triangle, we split the source to
the three neighboring vertices according to the barycentric coordi-
nates. For the vector field initial condition U0, we need to make
sure to express the initial tangent vector inside the face in the tan-
gent spaces of its vertices—using the coordinates of an edge vector
i j in both the tangent space of the face Xi jk ∈ Ti jkK ∼= C and in
the tangent space of its source vertex Xi ∈ TiK ∼= C, we consider
the parallel transport defined by the complex multiplication (with
respect to a basis representation) by

ri jk→i = Xi/Xi jk ∈ C.

Figure 14: Intrinsic Delaunay Triangulations. Our parameteriza-
tion method only depends on the intrinsic geometry of the domain,
enabling us to utilize the intrinsic Delaunay triangulation to en-
sure high quality parameterizations irrespective of the underlying
quality of the input mesh.

Intrinsic Triangulations The affine heat method relies solely on
intrinsic quantities. This makes it possible to improve accuracy
by using the intrinsic Delaunay triangulation [BS07] (Fig. 14).
This is an important preprocessing step, as negative edge weights
in the Laplacian may yield degenerate parameterization regions.
Flipping to the intrinsic Delaunay triangulation resulted in con-
tinuous parameterizations (away from the cut locus) on all exam-
ples we encountered—we use the integer coordinates introduced
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in [GSC21] to represent intrinsic triangulations, and apply this in-
trinsic preprocessing on all examples and experiments.

Graphs The affine heat methods generalize to a wide variety
of spatial discretizations with incidence relationships modeled by
graphs. To implement the affine heat method on a graph Γ =
(VΓ,EΓ) we need the following quantities: (1) for each vertex
i ∈ VΓ a tangent space TiΓ ∼= Rn along with a trivialization Φi :
TiΓ → Rn, (2) a local logarithmic map that assigns for each ori-
ented edge ij ∈ EΓ a tangent vector eij ∈ TiΓ describing the posi-
tion of the vertex j in the tangent space of the source point, and (3)
edge weights w : EΓ →R used to build a graph Laplacian and vertex
masses m :VΓ →R to build a corresponding mass matrix. From this
information, we can construct a discrete connection r∇

ij : TiΓ → TjΓ

exactly as we did for a simplicial surface:

r∇
i j :=

(
id Φi(ei j)
0 1

)
,

build the affine connection Laplacian, and apply the discrete algo-
rithm from Alg. 2 verbatim.

We apply this generalization to polygonal meshes (Fig. 16) and
point cloud scans (Fig. 15). So that we approximate geodesic po-
lar coordinates, we use the trivialization given by approximat-
ing a geodesic frame using the vector heat method, and we refer
to [SSC19] for further details on this step. For polygonal meshes,
we use the Laplacian defined by [BHKB20], and define the connec-
tion Laplacian on polygonal meshes following [FC24, Sec. 8.3].
For point clouds, we use the tufted Laplacian defined by [SC20].
In both cases, we define the local logarithmic map by projecting
the extrinsic edge vectors between neighboring vertices onto their
tangent spaces.

5. Applications

Below, we consider several illustrative applications to demonstrate
the utility of the high quality local parameterizations generated by
the affine heat method. As logarithmic maps are general purpose
tools, they have further applications beyond those we present (e.g.,

Figure 15: Point Cloud Scans. Our method generalizes naturally
to point clouds.

Figure 16: Polygonal Meshes. Our method generalizes naturally
to quad meshes, and more general polygonal meshes.

computing the Riemannian center of mass [Wei37]—these are of-
ten called “Karcher means”, a term of unclear origins [Kar14]).

Decaling The approximation of logarithmic maps computed by
our method, rooted at a chosen point p, provide ideal parameteriza-
tions for decaling applications where one is interested in applying
detailed textures or displacements not only locally, but well out-
side the injectivity radius of p. Their inherent geometric structure
allows textures, particularly those designed with radial or circular
features, to be mapped accurately and predictably onto curved sur-
faces (Fig. 17). Here, the improved accuracy of our method near the
source (Fig. 6) is of great importance, as distortions near the center
of a decal are visually displeasing.

Figure 17: Decaling Bowls. Using the logarithmic map, we can
effortlessly place a geometric pattern onto a bowl.

UV Flattening Beyond decaling, surface parameterization is cru-
cial for tasks requiring a mapping of the entire surface to a 2D
domain, often referred to as UV flattening. Our approach offers
flexibility in this context. Even on some surfaces with a highly
nontrivial topology we can generate a low distortion parameteri-
zation φp originating from just a single source point p that cov-
ers the entire surface (Fig. 18, left). In general, the single-source
global parameterizations inevitably suffer from high distortion far
from the source, limiting their utility for applications demanding
low metric error everywhere. For generating high-quality param-
eterizations suitable for traditional texturing workflows, a patch-
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based approach is often more effective. We leverage AHM within
such a framework as follows: select a set of source points {pi},
compute their geodesic Voronoi diagram {Ci} on the surface and
define the final parameterization by restricting the logarithmic map
φpi (computed via AHM rooted at pi) to the corresponding cell
Ci. Given approximations of geodesic distance from each source
{di : V → R}, we take the geodesic Voronoi cells to be the set
of faces closest (measured at the barycenter) to a single source:
Ci := { f ∈ F | ∑v∈ f di(v)≤ ∑v∈ f d j(v) ∀ j ̸= i}—we use the heat
method to approximate geodesic distances [CWW13]. By combin-
ing the local accuracy and robustness of AHM near each source
with Voronoi partitioning we can produce a set of low-distortion
charts that cover the entire surface (Fig. 18, right). Determining an
optimal configuration of points automatically (for different mea-
sures of optimality) is an interesting question for further research—
one simple possibility would be to use the landmarks generated by
furthest point sampling proposed in [SSC19, Sec. 8.5]

Stroke-Aligned Parameterizations The parameterization diffu-
sion approach we use to generate geodesic polar coordinates can
be generalized to compute stroke aligned parameterizations, sim-
ilar to those of [Sch13]. Starting from a curve γ : [0,1] → M en-
dowed with a parameterization z : [0,1] → Rn, we can extend this
parameterization to all of M by making two modifications to the
affine heat method. We first construct a frame aligned with γ and
extend it to M by parallel transport along shortest geodesics—in
the case n = 2, the frame along the curve is determined completely
by γ (i.e., γ

′,Jγ
′), but in higher codimension this frame needs to

be specified by the user—the natural choice would be the Bishop
frame computed via parallel transport along the curve [BWR∗08].

Figure 18: UV Flattening. Our logarithmic maps provide low dis-
tortion parameterizations even on complicated surfaces (left). On
surfaces that do not admit any non-degenerate parameterization
without seams, a user can specify a collection of points to compute
polar coordinates on the associated Voronoi cells (right).

Figure 19: Stroke-Aligned Parameterizations. Diffusing a pa-
rameterization specified along a curve provides a straightforward
method for computing aligned surface parameterizations. Measur-
ing the distance to the curve in UV space provides an estimate of
the geodesic distance to the curve.

We then construct the affine connection Laplacian (Eqn. 15) us-
ing the identification induced by this frame, and diffuse the initial
parameterization that is now specified along all of γ to obtain the
extended parameterization (Fig. 19). In these cases, it is no longer
meaningful to visualize the parameterization using a polar checker-
board pattern. If a parameterization is not already given, the natural
choice for an open curve is to consider the arclength parameteri-
zation of the curve along the +u-axis. For closed curves, a more
natural choice would be a parameterization along a circle. More
generally, the procedure just described generalizes to extend a pa-
rameterization defined on a submanifold of arbitrary codimension
to the entire manifold (e.g., extending a parameterization of an en-
tire surface to an aligned parameterization of the ambient space).
We leave the exploration of the utility of such surface aligned pa-
rameterizations to future work.

Distance and its Gradient AHMℓ and AHMa define novel heat
based approximations of geodesic distance as the length of their
approximation of the logarithmic map |φ|. In the localized variant,
the distance approximation is equivalently given by the length of
the radial field |Y|. In the vicinity of the source point, we observed
that these approximations of geodesic distance are more accurate
than even heat methods tailored for geodesic distance (Fig. 20). At
the cut locus, however, these approximations are inaccurate as our
method approximates a ground truth parameterization that is not
continuous.

The localized variant of the affine heat method also computes a
radial field Y from a point p as an intermediate step in computing
the logarithmic map logp. This radial vector is equal to half the gra-
dient of squared geodesic distance, and is of independent interest
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Figure 20: Geodesic Distance. Our distance approximations are
more accurate in a neighborhood around the source (highlighted in
orange) than both the original heat method of [CWW13] (HM) and
the signed heat method of [FC24] (SHM). We measure the error
against the exact polyhedral distance in the highlighted region.

as it is the evaluation of the logarithmic map to p from every other
point q ∈ M:

Yq =− logq(p).

Unlike previous approaches, AHMℓ computes this radial vector
field without differentiating the distance approximation, or approx-
imating the Hausdorff measure supported on a small (or infinitesi-
mal) circle (Fig. 21).

Figure 21: Radial Vector Fields. On anisotropic meshes, normaliz-
ing the radial vector field approximated via affine diffusion (AHMℓ)
can produce a noticeably more isotropic approximation than that
computed via vector diffusion à la [SSC19].

6. Evaluation

We consider a diverse set of numerical experiments to evaluate the
performance, accuracy, and tradeoffs of our methods.

Performance The affine heat method’s runtime is dominated by
solving two sparse linear systems. AHMℓ requires factoring one
matrix, reusable for the two linear systems and across multiple
sources—this results in 7− 30× speedups for AHMℓ on succes-
sive solves (Fig. 22, bottom left). The source-dependence of the
connection in AHMa prevents prefactoring of one matrix; reusing
the symbolic factorization yields 3− 10× speedups on successive

Figure 22: Runtime. Top: simulating affine diffusion is slightly
more expensive than vector diffusion. Bottom row: The full fac-
torization of AHMℓ can be reused to speedup successive solves.
AHMa additionally requires updating the numerical factorization
of a single matrix (red) when the source is changed.

solves (Fig. 22, bottom right). On the [MZ13] dataset, AHMℓ is
on average 27% slower than VHMlog, while AHMa is 70% slower
due to requiring the solution of an additional linear system (Fig. 22,
top). On a typical model of about 100k vertices, AHMa takes ≈ 1s.
All heat methods share the same asymptotic time complexity dom-
inated by the time it takes to solve connection Laplace-type equa-
tions. Our code is implemented in C++; timings are reported on an
Intel i7-14700K CPU.

Localized vs. Adaptive The local-
ized variant of the affine heat method
is faster, while the adaptive vari-
ant delivers higher accuracy. How-
ever, they are almost indistinguish-
able within the injectivity radius, as
quantified by difference in the pa-
rameterization measured and visual-
ized in Fig. 8. They primarily dif-
fer in their behavior near the cut
locus (see inset)—the estimate of
the angular coordinate of the log-
arithmic map estimated by AHMa
is smoother and provides an accu-
rate measure of the direction back
to the source. To assess convergence
we measure the error against the an-
alytical solution on a refined sequence of discretizations of the unit
sphere (Fig. 24)§. Both variants of the affine heat method appear

§ The analytical solution is obtained by combining the exact geodesic dis-
tance function d(x,y) = cos−1(x · y) with the angle formed by the geodesic
from the source p and a fixed reference direction
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Figure 23: Robustness. Our affine method more robustly produces accurate logarithmic maps than prior methods based on heat diffusion
(VHMlog, SEM), especially when the the underlying geometry is coarsely tesselated. All methods use diffusion operators built on the intrinsic
Delaunay triangulation.

Figure 24: Convergence on S2. We observe a linear convergence
rate to the analytical solution on S2 in both the L2 and L∞ norms.

to exhibit a linear convergence rate O(h), where h is the mean edge
length. We measure the convergence in both L2 and L∞. Due to the
inherent discontinuity of the true logarithmic map at the cut locus
(antipodal point), we measure the L∞ error only in the hemisphere
while measuring the L2 error over the entire surface. The adaptive
variant does produce, to a slight extent, a more accurate parameter-
ization.

Comparisons with Prior Work To evaluate the numerical accu-
racy of our method we compare the parameterization accuracy with
existing methods for computing logarithmic maps: namely, the dis-
crete exponential maps (DEM) from [SGW06], the smoothed ex-
ponential maps (SEM) from [HA19], and the vector heat method
log maps (VHMlog)from [SSC19]. We also utilize the intrinsic De-
launay triangulation when applying VHMlog and SEM.

While metric distortion is not an explicit objective of any of these
methods, it is an important practical indicator of the usability of
the parameterization for downstream tasks. In Fig. 2, we compute
the metric distortion of the parameterizations computed both by our
methods and by the previous work. The affine heat methods outper-
form the alternatives. On each triangle we measure the distortion as

D = max
(

1/σ1,σ2
)
, (18)

where σ1 ≤ σ2 are the singular values of the gradient of the param-
eterization inside the triangle. The distortion of a triangle is mini-

mized if the parameterization is isometric with D = 1. The figure
shows that near the source point VHMlog and SEM introduce local
distortion. DEM, on the other hand, resolves the parameterization
directly near the source point, but is overly distorted across the sur-
face. Compared with these methods, AHMℓ and AHMa produce
parameterizations with less distortion globally, and with smoother
distortion distributions.

Fig. 25 highlights that while the discrete exponential maps
method of [SGW06] provides accurate coordinates locally, distor-
tion accumulates significantly far from the source point as indicated
by the irregular checkerboard pattern. In contrast, AHMa computes
a smooth parameterization, even up to and including the cut locus.
Even in the Euclidean setting where the ground truth parameteriza-
tion is trivial, Figs. 6 and 26 shows that VHMlog and SEM produce
parameterization with distortion concentrated near the source point,
respectively. Both AHMℓ and AHMa not only resolve this local
distortion, but reproduces the trivial solution over the entire mesh.
Finally, we observe that even AHMℓ exhibits strong robustness to
various forms of low-quality tessellations where both VHMlog and
SEM struggle (Fig. 23).

Figure 25: Discrete Exponential Maps Comparison. The DEM
approach of [SGW06] produces distorted parameterizations as the
deviations in the normals accumulate.
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Figure 26: Smoothed Exponential Maps Comparison. The heat
method approach for computing smoothed exponential maps
of [HA19] also produces distorted parameterizations, even in the
trivial case of a flat grid.

6.1. Limitations and Future Work

While our method offers significant advantages in terms of pa-
rameterization quality relative to prior work, it also presents cer-
tain challenges and suggests avenues for future research. The main
computational challenge of the adaptive variant is that the depen-
dence of the connection Laplacian operator on the source point im-
plies that the symbolic factorization needs to be recomputed across
multiple solves. While the localized affine heat method we pre-
sented does not suffer from this problem, finding a reformulation
that computes identical parameterizations using a fixed universal
operator would be desirable, if one exists. Inspired by the fact that
the heat method can be understood as the first iteration in a fixed
point method for solving a nonlinear PDE [BF15], we are also inter-
ested in understanding whether our localized and adaptive variants
admit a similar formulation. Turning our attention to controlling
the local parameterizations, we note that since the principal sym-
bol of a Laplacian is the Riemannian metric, vector heat methods
can only ever compute parallel transport along shortest geodesics
as defined by the metric (or equivalently the cotan weights). In
particular, such a formulation cannot be generalized to compute
the logarithmic map associated to an arbitrary affine connection.
Nevertheless, some control over the geodesics can be obtained by
changing the underlying metric (e.g., using a conformally equiva-
lent metric). Generalizing heat methods beyond the setting of in-
duced metrics and developing intuitive handles for modifying the
notion of geodesics would make for interesting future work. Fi-
nally, while we presented applications of computing surface loga-
rithmic maps, our methodology generalizes to higher-dimensional
domains. For example, we can use the affine heat method on a
regular grid to compute the logarithmic map of a point in R3

(see inset for the distance compo-
nent computed this way)—in this case,
the resulting parameterization is triv-
ial, but more complicated boundary con-
ditions or sources (i.e., strokes and
surfaces) can produce more interesting
3D parameterizations—we leave appli-
cations of our method in higher dimen-
sions to future work.

7. Conclusion

We introduced the affine heat method for computing logarithmic
maps on surfaces. Utilizing Euclidean transformations to encode
the parameterization in the parallel sections of a connection, we
can efficiently approximate the parameterization via the solution
of an affine diffusion equation. A localized and adaptive variant of
the affine heat method were developed, providing practitioners with
a tradeoff between computational cost and improved parameteriza-
tion quality. Both variants of the algorithm are simple to implement,
only requiring the solution of Laplace-type linear systems. Our ap-
proach generalizes to producing stroke-aligned parameterizations,
and can be used to cover a surface with parameterized patches pro-
cedurally. Comparisons with prior work demonstrate that we obtain
higher quality results by diffusing the parameterization directly in-
stead of by computing the angular and distance components sepa-
rately and then assembling the resulting parameterization.
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Appendix A: Adapted Geodesic Frames

For Riemannian manifolds, parallel transport with respect to the
Levi-Civita connection ∇ along geodesics is essentially character-
ized by the property that the angle between the parallel transported
vector and the tangent vector of the curve remains constant: since
the Levi-Civita connection is a metric connection, if X is parallel
along a geodesic γ we have that

⟨X ,γ′⟩′ = ⟨∇γ′X ,γ′⟩+ ⟨X ,∇γ′γ
′⟩= 0.

This gives us an approach to construct the frame Φ on the tangent
bundle suitable for the construction of logarithmic maps.

Definition 1 A geodesic frame adapted to p is a collection of n vec-
tor fields U1, . . . ,Un ∈ Γ(T M) obtained by parallel transport along
shortest geodesics from p of a fixed frame (U1)p, . . . ,(Un)p ∈ TpM.

More precisely, we fix an orthonormal frame U1
p , . . . ,U

n
p ∈ TpM

at p to M that we extend to vector fields U1, . . . ,Un via parallel
transport along the geodesics emanating from p. We then define
Φ : T M → Rn via

X ∈ TpM 7→

⟨U1,X⟩
...

⟨Un,X⟩

 ∈ Rn. (19)

Notice that the identification Φ depends on p, in addition to the
initial frame in TpM.

Appendix B: Planar Domains

Since the affine parallel transport is trivial on a planar triangle
mesh, we can show that the affine heat method is gauge-equivalent
to a scalar diffusion equation:

Lemma 3 Let K be a planar triangle mesh with vertex positions
z : V → R2. Let L∇ be the affine connection Laplacian associated
to r∇ and LR

2
be the componentwise scalar cotan Laplacian. For

any right hand side b,b, the solution of the equation

(M+ τL∇)
( x

λ

)
=

(b
b

)
is given by xi = x̃i + zi and λi = λ̃i where x̃, λ̃ are obtained as sol-
tuions of

(M+ τLR
3
)
(

x̃
λ̃

)
=

(
b̃
b

)
,

with b̃i = bi − zi.

Proof Fix a vertex i ∈ V . Using the fact that ei j = z j − zi we obtain(
bi
bi

)
=Mii

(
xi
λi

)
+ τ∑

ij
wi j

((
xi
λi

)
− r∇

ji

( x j

λ j

))
=Mii

(
xi
λi

)
+ τ∑

ij
wi j

((
xi
λi

)
−
(

x j+zi−z j

λ j

))
=

(
id zi
0 1

)[
Mii

(
xi−zi

λi

)
+ τ∑

ij
wi j

((
xi−zi

λi

)
−
(

x j−z j

λ j

))]

=
(

id zi
0 1

)[
Mii

(
x̃i

λ̃i

)
+ τ∑

ij
wi j

((
x̃i

λ̃i

)
−
( x̃ j

λ̃ j

))]
.

Figure 27: Mazes. The affine heat method provides an extension
of the logarithmic map outside the region where the exponential
map is invertible. On planar domains, the extension produces the
identity parameterization.

The exact recovery of (a translate of) the vertex positions using
the discrete affine heat method on planar domains follows since for
the right hand side b̃i = 0 and b = δv for some vertex v ∈ V that
the solution of the scalar diffusion is given by x̃i = 0. Therefore, af-
ter translation we obtain xi = zi for all vertices i ∈ V . Observe that
this property does not depend on the choice of edge weights nor
the choice of diffusion time τ. Fig. 27 shows that our algorithm re-
produces the trivial parameterization even on a complicated planar
domain.
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